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Background and Purpose

The purpose of this notepad is to investigate three methods of gathering SQL elapsed times; SQL trace, source code instru-
mentation, and OraPub’s Elapsed Time Sampler (beta v4).

Experimental Data

Below is all the experimental data. The experiment was run on a Dell single four-core CPU, Oracle 11.2G. According to “cat
/proc/version”:  Linux  version  2.6.18-164.el5PAE  (mockbuild@ca-build10.us.oracle.com)  (gcc  version  4.1.2  20080704  (Red
Hat  4.1.2-46))  #1  SMP Thu  Sep  3  02:28:20  EDT 2009.  There  was  a  tremendous  CBC latch  contention  load,  the  OS was
CPU bottlenecked at 100% utilization. The sample set interval was 5 minutes.

The order of sample data is elapsed time (seconds).

The three sets are:

ssToolV3 data was gathered using the OraPub SQL Elapsed Sampler version 3a.
ssIntrumentedV1 data was gathered using time gathered just before and after the sql statement was executed each time.
ssTraceV4  data  was  gathered  using  a  shell  script  to  parse  through  a  trace  file,  which  only  had  data  for  the  specific  sqlid
under observation.

In[1]:=
ssToolV3 = 81.767666, 1.518642, 1.518561, 1.784412, 1.808626, 2.009722, 1.518732, 1.520677, 1.51853,

1.764539, 1.771699, 1.525678, 1.810673, 1.777627, 6.89338, 2.288473, 2.72366, 2.964467,
2.489718, 1.333654, 1.518478, 2.245655, 1.827613, 2.008537, 2.002821, 4.410587, 2.731605,
2.542492, 2.241653, 2.01862, 2.009639, 1.762681, 1.555664, 1.759525, 1.569629, 1.283757,
2.735525, 2.000659, 1.518548, 2.002676, 2.723594, 1.759653, 2.491581, 2.05056, 2.735544,
2.000499, 2.001705, 2.725593, 3.513618, 2.516472, 2.022676, 1.759562, 1.518653, 2.26362,
4.42956, 2.241625, 1.759642, 1.521695, 1.759607, 1.763891, 2.000644, 2.73557, 1.762558,
1.840116, 2.000518, 2.241591, 2.482646, 1.767594, 1.525654, 1.283704, 2.241546, 2.753659,
1.759537, 2.010594, 1.760708, 1.758692, 2.009638, 2.290598, 2.492627, 2.24156, 1.767647<;

ssInstrumentedV1 = 81.743327, 1.664634, 1.620656, 1.621973, 2.28016, 1.809512, 1.911768, 1.635249,
1.626635, 1.80816, 1.656637, 1.789185, 1.624409, 1.832635, 1.803162, 7.255142, 2.330535,
2.830604, 3.104761, 2.507755, 1.632316, 1.691193, 2.12539, 1.835945, 1.943198, 1.90315,
4.694471, 2.863778, 2.841089, 2.205007, 1.881308, 1.859121, 1.753866, 1.687689, 1.627337,
1.715177, 1.586555, 2.636796, 2.024178, 2.281286, 2.023567, 2.630976, 1.875818, 2.555945,
2.224021, 2.8679, 1.929357, 2.196423, 2.724408, 3.699935, 2.974219, 1.964847, 1.86812, 2.092287,
2.467177, 4.894718, 2.202867, 1.911851, 1.608843, 1.725006, 1.771269, 2.288353, 2.800475,
1.588898, 1.891323, 2.437246, 2.552358, 2.457707, 1.683852, 1.632384, 1.715668, 2.061057,
2.701076, 1.858633, 1.800178, 1.782631, 1.631529, 2.14331, 2.284766, 2.628907, 2.59879<;

ssTraceV4 = 81.660351, 1.618885, 1.620529, 2.079340, 1.808099, 1.908893, 1.633803, 1.625207,
1.805905, 1.654301, 1.786923, 1.622185, 1.831073, 1.801623, 7.077461, 2.329004, 2.829103,
3.102503, 2.505485, 1.630009, 1.688804, 2.123024, 1.833691, 1.940932, 1.901513, 4.493080,
2.860241, 2.838904, 2.202768, 1.879802, 1.857663, 1.752419, 1.686225, 1.625099, 1.673690,
1.584356, 2.634501, 2.022832, 2.128306, 2.022080, 2.629479, 1.874318, 2.554511, 2.222008,
2.865609, 1.927211, 2.095340, 2.722211, 3.598867, 2.972704, 1.962327, 1.865951, 1.866360,
2.266289, 4.397910, 2.201021, 1.909574, 1.606611, 1.722349, 1.769086, 2.286116, 2.699535,
1.586294, 1.889070, 2.435653, 2.550875, 2.356181, 1.682314, 1.630129, 1.713436, 2.059333,
2.699629, 1.857081, 1.797896, 1.780331, 1.629258, 2.140887, 2.282376, 2.553857, 2.596437<;



Basic Statistics

In  this  section  I  calculate  the basic  statistics,  such as  the mean and median.  My objective  is  to  ensure the data  has been
collected and entered correctly and also to compare the two datasets to see if they appear to be different.

In[4]:=
ssTool = ssToolV3;
ssInstrumented = ssInstrumentedV1;
ssTrace = ssTraceV4;
myData =
8
8"Trace", Mean@ssTraceD, Median@ssTraceD, StandardDeviation@ssTraceD, Length@ssTraceD
<,
8"Instr", Mean@ssInstrumentedD, Median@ssInstrumentedD,
StandardDeviation@ssInstrumentedD, Length@ssInstrumentedD

<,
8"Tool", Mean@ssToolD, Median@ssToolD, StandardDeviation@ssToolD, Length@ssToolD
<

<
toGrid = Prepend@myData, 8"Method", "Mean", "Median", "Std Dev", "Samples"<D;
Grid@toGrid, Frame Ø AllD

Out[7]=
88Trace, 2.19921, 1.91839, 0.795444, 80<,
8Instr, 2.22215, 1.92936, 0.834282, 81<, 8Tool, 2.12768, 2.00064, 0.786436, 81<<

Out[9]=

Method Mean Median Std Dev Samples
Trace 2.19921 1.91839 0.795444 80
Instr 2.22215 1.92936 0.834282 81
Tool 2.12768 2.00064 0.786436 81

Sample Comparison Tests (when normality does NOT exist)

If our sample sets are not normally distributed, we can not perform a simple t-test. We can perform what are called loca-
tion tests. I did some research on significance testing when non-normal distributions exists. I found a very nice reference:

http://www.statsoft.com/textbook/nonparametric-statistics

The paragraph below (which is from the reference above) is a key reference to what we’re doing here:

...the need is evident for statistical procedures that enable us to process data of “low quality,” from small  samples, on vari-
ables  about  which  nothing  is  known (concerning  their  distribution).  Specifically,  nonparametric  methods were  developed to
be  used  in  cases  when  the  researcher  knows  nothing  about  the  parameters  of  the  variable  of  interest  in  the  population
(hence the name nonparametric). In more technical terms, nonparametric methods do not rely on the estimation of parame-
ters  (such  as  the  mean  or  the  standard  deviation)  describing  the  distribution  of  the  variable  of  interest  in  the  population.
Therefore,  these  methods  are  also  sometimes  (and  more  appropriately)  called  parameter-free  methods  or  distribution-free
methods.

Being  that  I’m  not  a  statistician  but  still  need  to  determine  if  these  sample  sets  are  significant  different,  I  let  Mathematica
determine the appropriate test. Notice that one of the above mentioned tests will probably be the test Mathematica chooses.

Note:  If  we  run  our  normally  distributed  data  through this  analysis  (speically,  the  “LocationEquivalenceTest”),  Mathematica
should detect this and use a more appropriate significant test, like a t-test.
Here we go with the hypothesis testing (assuming our sample sets are not normally distributed):

1. Our P value threshold is 0.05, which is our alpha.
2. The null  hypotheses is the two populations have the same mean. (Remember we have to sample sets,  which is not the
population.)
3. Do the statistical test to compute the P value.
4. Compare the result  P value to our threshold alpha value. If  the P value is less then our threshold, we will  reject the null
hypothesis and say the difference between our samples is significant. (Which is what I’m hoping to see.) However, if  the P
value  is  greater  than  the  threshold,  we  cannot  reject  the  null  hypothesis  and  any  difference  between  our  samples  are  not
statistically significant; randomness, picked the “wrong” samples, etc.
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In[10]:=
Histogram@ssToolD
SmoothHistogram@8ssInstrumented, ssTrace, ssTool<,
PlotLabel Ø "Occurances vs Elapsed Time", AxesLabel Ø 8"ElapsedHsL", "Occurs"<D

SmoothHistogram@8ssInstrumented, ssTrace<, PlotLabel Ø "Occurances vs Elapsed Time",
AxesLabel Ø 8"ElapsedHsL", "Occurs"<D

t1 = LocationEquivalenceTest@8ssInstrumented, ssTool<, 8"TestDataTable", "AutomaticTest"<D
t2 = LocationEquivalenceTest@8ssInstrumented, ssTrace<, 8"TestDataTable", "AutomaticTest"<D
t3 = LocationEquivalenceTest@8ssTrace, ssTool<, 8"TestDataTable", "AutomaticTest"<D

Out[10]=
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Out[13]=
: Statistic P-Value
Kruskal-Wallis 1.13113 0.288941

, KruskalWallis>

Out[14]=
: Statistic P-Value
Kruskal-Wallis 0.0660265 0.798124

, KruskalWallis>
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Out[15]=
: Statistic P-Value
Kruskal-Wallis 1.00833 0.316816

, KruskalWallis>

Log Normal Distribution Fit Test

In[16]:=
transformedSS = 8<;
Table@

AppendTo@transformedSS, Log@ssTool@@iDDDD,
8i, 1, Length@ssToolD<

D;
transMean = Mean@transformedSSD
transSD = StandardDeviation@transformedSSD
SmoothHistogram@transformedSSD

Out[18]=
0.709829

Out[19]=
0.280079

Out[20]=
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In[21]:=
ndSS = RandomVariate@NormalDistribution@transMean, transSDD, 20 000D;
Take@ndSS, 5D

Out[22]=
80.735147, 0.678915, 0.458282, 0.348326, 1.20114<

In[23]:=
SmoothHistogram@8transformedSS, ndSS<D

Out[23]=
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In[24]:=
h = DistributionFitTest@transformedSSD

Out[24]=
0.0000836811
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