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Introduction

I wanted to flexibly, using a small number of values, using a large number of values, using various statistical
distributions  demonstrate  a  central  limit  theorem claim:  If  you divide  up a  population  into  sample  sets  and
calculate the mean of each sample set, the distirbution of the means will be normal. This is my first test.

Because the sample set of means is normal, we can make all the typical claim that normality provides. This
is my second test.

This particular file is based on my February 2012 blog posting entitled, “Wanna Bet.” For that particu-
lar test, a 900 value sample set is being used. I used an exponential distribution because it is obvi-
ously not normally distributed.

Sample values

I have included three possibilities below. Just make sure the sample set the sampleSetRaw variable to your
sample set!

In[1]:=
cutoffMin = -9999.0;
cutoffMax = 9999.0;

SeedRandom@13D; H* 13 used for blog posting *L
ssReal = RandomReal@80, 500<, 3000D;
ssNormal = RandomReal@NormalDistribution@50, 5D, 3000D;
ssExpo = RandomReal@ExponentialDistribution@1 ê 5D, 900D;
ssChi = RandomVariate@ChiSquareDistribution@35D, 500D;
ssBlog = RandomVariate@ChiSquareDistribution@40D, 75D;

sampleSetRaw = ssExpo;

Basic Numeric Statistics

The main basic numeric statistics shown are:

First five values simply lists the first five values of your sample set. Use this to check the data being used is
what you think.
Number of samples is in fact the number of samples. Use this to check the data has been entered correctly.
Average is the statistical mean.
Median is the middle value after all the values are sorted. This is also the 50-percentile value.
Standard deviation is a measure of dispersion and is particularly valuable when the distribution is normal.
P-Value is a measure of contrast. In this instance, we are constrasting the sample set to the normal distribu-
tion.  Loosely  speaking,  if  the  P-Value  is  greater  than  0.05  then  our  sample  set  is  likely  to  be  normally
distributed.



In[9]:=
sampleSetGood = 8<;
sampleSetBad = 8<;
Table@

If@HHsampleSetRaw@@iDD § cutoffMaxL && HsampleSetRaw@@iDD ¥ cutoffMinLL,
AppendTo@sampleSetGood, sampleSetRaw@@iDD D,
AppendTo@sampleSetBad, sampleSetRaw@@iDD D

D
, 8i, 1, Length@sampleSetRawD<

D;

countRaw = Length@sampleSetRawD;
countGood = Length@sampleSetGoodD;
countBad = Length@sampleSetBadD;

firstFiveRaw = Take@sampleSetRaw, 5D;
firstFiveGood = Take@sampleSetGood, 5D;
firstFiveBad = Take@sampleSetBad, 5D;

avgParent = Round@N@Mean@sampleSetGoodDD, 0.0000010D;
medParent = Round@N@Median@sampleSetGoodDD, 0.0000010D;
stdParent = Round@N@StandardDeviation@sampleSetGoodDD, 0.000010D;
varParent = Variance@sampleSetGoodD;
pValue = Round@N@DistributionFitTest@sampleSetGoodDD, 0.0000010D;
pct90 = Round@N@Quantile@sampleSetGood, 0.90DD, 0.000010D;
pct95 = Round@N@Quantile@sampleSetGood, 0.95DD, 0.000010D;
pct99 = Round@N@Quantile@sampleSetGood, 0.99DD, 0.000010D;
maxVParent = Max@sampleSetGoodD;

Grid@8
8"Number of total samples", countRaw<,
8"Number of good samples", countGood<,
8"Number of bad samples", countBad<,
8"First five raw samples", firstFiveRaw<,
8"First five good samples", firstFiveGood<,
8"First five bad samples", firstFiveBad<,
8"Good Sample Details", "---"<,
8" Mean", avgParent<,
8" Median H50%-tileL", medParent<,
8" Maximum", maxVParent<,
8" Percentiles H90,95,99L", 8pct90, pct95, pct99<<,
8" Variance", Round@N@varParentD, 0.00000010D<,
8" Standard deviation", stdParent<,
8" P-Value", pValue<

<,
8Alignment Ø 8Left<,
Frame Ø None<

D

Take::take : Cannot take positions 1 through 5 in 8<. à
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Out[27]=

Number of total samples 900
Number of good samples 900
Number of bad samples 0
First five raw samples 81.65495, 2.12077, 3.98637, 1.50936, 12.9898<
First five good samples 81.65495, 2.12077, 3.98637, 1.50936, 12.9898<
First five bad samples Take@8<, 5D
Good Sample Details ---

Mean 5.34305
Median H50%-tileL 3.46265
Maximum 47.1627
Percentiles H90,95,99L 811.8099, 16.964, 23.8207<
Variance 31.1043
Standard deviation 5.57712
P-Value 0.

Basic Visual “Statistics”

Histograms  are  a  fantastic  way  to  get  a  quick  grasp  of  a  large  number  of  samples.  Below  are  a  select
number of histogram, each focusing on a specific numeric quality.

In[28]:=
hLabel = "Sample Values";
vLabel = "Occurrences";

histStnd = Histogram@sampleSetGood,
PlotLabel Ø "Histogram of Sample Values", AxesLabel Ø 8hLabel, vLabel<D;

histStndSmooth = SmoothHistogram@sampleSetGood, PlotLabel Ø
"Smoothed Histogram of Sample Values\nHProbability Distribution FunctionL",

AxesLabel Ø 8hLabel, ""<D; histCC = Histogram@sampleSetGood, Automatic,
"CumulativeCount", PlotLabel Ø "Histogram of Sample Values\nCumulative Count",
AxesLabel Ø 8hLabel, vLabel<D;

histProb = Histogram@sampleSetGood, Automatic, "Probability", PlotLabel Ø
"Histogram of Sample Values\nProbability", AxesLabel Ø 8hLabel, "% Occurs"<D;

histStndSmallBin = Histogram@sampleSetGood, 80.250<, PlotLabel Ø
"Histogram of Sample Values\nbin size 0.250", AxesLabel Ø 8hLabel, vLabel<D;

Print@
"

"D;

Below is  a  standard histogram, where each sample is  shown as a single block placed on the vertical  axis
based on its value. Common sample values (i.e., blocks) show as high stacks.
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In[35]:=
histStnd

Out[35]=

Below is known as a Cummlative Count histogram. Each vertical bar represents the total number of samples
values that are less than or equal to the bin.

In[36]:=
histCC

Out[36]=

Below is a Probability Historgram. It will visually look exactly like the standard histogram but the vertical axis
is  a  percentage  value.  Each  vertical  bar’s  height  represents  the  percentage  of  values  that  is  contains.  In
contrast, the standard histogram hight is the actual number of sample occurrences.
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In[37]:=
histProb

Out[37]=

Below is a Smoothed Histogram. It will have a similar shape to the Standard Histogram, but will be mathemat-
ically smoothed. Sometimes this is a much more pleasent and informative visual,  but not always. Remem-
ber, it is smoothed so it does not consist of the actual values. For example, you may see the line go nega-
tive,  even  though  there  are  no  negative  values.  In  reality,  the  plot  is  the  probability  distribution  function
(PDF).

In[38]:=
histStndSmooth

Out[38]=
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Below is a standard histogram but with the bin size set to 0.250. This is only  useful when the sample values
range  below  1.0,  such  as  when  sampling  SQL  statements  (we  all  hope).  Sample  sets  with  large  sample
values will likely not result in a plot.
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In[39]:=
histStndSmallBin

Out[39]=

Are child sample set MEANS normally distributed?

According to the central limit theorem, regardless of a parent sample set’s distribution (e.g., normal), dividing
the parent set into many smaller sample sets, and then creating a sapmle set based on their averages (the
means of the child sample sets), the distribution of the child sample set’s means is supposed to be normally
distributed. In fact, this is supposed to be true regardless of the parent sample set’s distribution! But is this
really true? This is what this section is all about. Have fun!

Here’s an example of how you can test this. Create a 900 value sample set based on a real life distribution,
such as normal, exponential, or uniform. Randomlly create 30 sub sample sets from the original sample set,
each with 30 values. Compute the mean for each of the 30 subsets and place these into a new sample set.
Based  on  this  new sample  set,  calculate  the  basic  stats  and  plot  the  histogram...  it’s  normally  distributed!
...the larger our sample sets the more likely this is true.

Here is a good link: http://www.statisticalengineering.com/central_limit_theorem.htm

In[40]:=
subScript = 6; H* this is where I start pulling from the parent set,
actually the superSet, to create the child saple sets *L
subSSnumber = IntegerPart@HLength@sampleSetGoodD^0.5LD;

subSSLength = IntegerPart@Length@sampleSetGoodD ê subSSnumberD;
superSet = Join@sampleSetGood, sampleSetGoodD;

Table@
subSSValues@iD = 8<;
Table@
subScript = subScript + 1;
AppendTo@subSSValues@iD, superSet@@subScriptDDD;
, 8j, 1, subSSLength<

D;
, 8i, 1, subSSnumber<

D;
subSSValues@1D;
subSSValues@2D;
subSSMeans = 8<;
Table@

AppendTo@subSSMeans, Mean@subSSValues@iDD D;
, 8i, 1, subSSnumber<

D;
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In[49]:=
subSSMeans

Out[49]=
86.35511, 4.91329, 3.7737, 5.27418, 6.52658, 7.68304, 4.4319, 6.09553, 4.64664, 6.10894,
4.422, 5.21073, 4.33155, 6.78821, 5.38437, 5.38456, 5.80179, 4.60562, 4.87516, 6.77315,
5.38634, 5.55096, 5.43312, 4.48588, 4.75642, 5.06397, 4.43674, 4.72971, 5.00164, 6.06055<

In[50]:=
Length@subSSMeansD

Out[50]=
30

In[51]:=
Length@subSSValues@1DD

Out[51]=
30

In[52]:=
DistributionFitTest@subSSMeansD

Out[52]=
0.184393

In[53]:=
Mean@subSSMeansD

Out[53]=
5.34305

In[54]:=
StandardDeviation@subSSMeansD

Out[54]=
0.891705
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In[55]:=
hLabel = "Sample Values";
vLabel = "Occurrences";

histStnd = Histogram@subSSMeans,
PlotLabel Ø "Histogram of Sample Values", AxesLabel Ø 8hLabel, vLabel<D;

histStndSmooth = SmoothHistogram@subSSMeans, PlotLabel Ø
"Smoothed Histogram of Sample Values\nHProbability Distribution FunctionL",

AxesLabel Ø 8hLabel, ""<D;
histStnd
histStndSmooth

Out[59]=

Out[60]=
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I  want  to  demonstrate  that  95%  of  the  child  sample  set  (of  means)  fall  within  2*stdev  of  the  population
mean.

While this is kind of technical, the standard deviation is describing our samples, not an entire population. So
what  we  are  saying  is  only  technically  valid  when  related  our  30  samples.  If  we  are  making  inferences
beyond that, we need to calculate the “population standard deviation” which has slightly different math. But
we’re OK in this example because we are refering specifically to our sample set.
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In[61]:=
avgSSMean = Mean@subSSMeansD;
avgSSStd = StandardDeviation@subSSMeansD
avgSSHigh = avgSSMean + 2 * avgSSStd
avgSSLow = avgSSMean - 2 * avgSSStd
yesCntrStd = 0;
noCntrStd = 0;

Table@
H*Print@i," ",subSSMeans@@iDDD;*L
If@HavgSSLow § subSSMeans@@iDDL && HavgSSHigh ¥ subSSMeans@@iDDL,

yesCntrStd = yesCntrStd + 1,
noCntrStd = noCntrStd + 1

D;
, 8i, 1, subSSnumber<

D;
Print@"Yes=", yesCntrStd, " No=", noCntrStd,

" Yes%=", N@yesCntrStd ê HyesCntrStd + noCntrStdLDD;

Out[62]=
0.891705

Out[63]=
7.12646

Out[64]=
3.55964

Yes=29 No=1 Yes%=0.966667
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