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Background and Purpose

The purpose of this notepad is to see if set based processing provides increased throughput and scalability compared to row
based processing. 

The set based processing was performed using SQL. The row based processing was performed using Oracle’s plsql.

Experimental Data

Below is the some of the the experimental data. It only incluces the sample times (elapsed time) to process 100K rows. (Not
200K,  ...  1000K  rows.)  The  experiment  was  run  on  a  Dell  single  six-core  CPU,  Oracle  11.2G.  According  to  “cat
/proc/version”:  Linux  version  2.6.32-300.3.1.el6uek.x86_64  (mockbuild@ca-build44.us.oracle.com)  (gcc  version  4.4.4
20100726 (Red Hat 4.4.4-13) (GCC) ) #1 SMP Fri Dec 9 18:57:35 EST 2011.
 

setProcessing = 8.068537, .065366, .064761, .064817,
.065704, .065924, .065158, .065038, .065117, .065771, .065061, .065039<;

rowProcessing = 8242.97254, 243.032936, 244.847836, 245.510885, 245.722446, 244.850288,
247.626378, 245.650096, 244.134109, 245.05695, 244.900598, 243.624751<;

Basic Statistics

In  this  section  I  calculate  the basic  statistics,  such as  the mean and median.  My objective  is  to  ensure the data  has been
collected and entered correctly and also to compare the two datasets to see if they appear to be different.

myData = 8
8"Set", N@Mean@setProcessingDD, N@StandardDeviation@setProcessingDD,
Length@setProcessingD, DistributionFitTest@setProcessingD<,

8"Row", N@Mean@rowProcessingDD, N@StandardDeviation@rowProcessingDD,
Length@rowProcessingD, DistributionFitTest@rowProcessingD<

<;
toGrid = Prepend@myData, 8"Processing\nType", "Avg Time HsL", "Stdev", "Samples", "P-Value"<D;
Grid@toGrid, Frame Ø AllD

Processing
Type

Avg Time HsL Stdev Samples P-Value

Set 0.0655244 0.00101909 12 0.00133837
Row 244.827 1.29425 12 0.548369

Sample Set Normality Tests

Before we can perform a standard t-test hypothesis tests on our data, we need to ensure it is normally distributed...because
that is one of the underlying assumptions and requirements for properly performing a t-test.

Statistical  and vlsual normality test

Our alpha will  be 0.05, so if  the distribution fit  test results in a value greater than 0.05 then we can assume the data set is
indeed normally distributed.

The first  test  is  just  to double check to make sure my thinking is correct.  Since I  creating a normal distribution based on a
mean and standard deviation (just happens to be based on the my sample set data), I would expect a p-value (the result) to
greatly exceed 0.05. Notice that the more samples I have created (the final number), the closer the p-value approaches 1.0.
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DistributionFitTest@setProcessingD
Histogram@setProcessing, PlotLabel Ø "Occurances vs Processing Time HsL",
AxesLabel Ø 8"Sample value", "Occurs"<D

0.00133837

DistributionFitTest@rowProcessingD
Histogram@rowProcessing, PlotLabel Ø "Occurances vs Processing Time HsL",
AxesLabel Ø 8"Sample value", "Occurs"<D

0.548369

Sample Comparison Tests (when normality exists)

Assuming our samples are normally distributed, now it’s time to see if they are significantly different. If so, then we know
changing the commit write optoins indeed makes a significant performance difference...at least statistically.

The null  hypothesis is;  there is  no real  difference between our samples sets.  We need to statistically  prove that  any differ-
ence is the result of randomness; like we just happened to pick poor set of samples and it makes their difference look much
worse than it really is.

A t-test will produce a statistic p. The p value is a probability, with a value ranging from zero to one. It is the answer to this
question: If the populations really have the same mean overall, what is the probability that random sampling would lead to a
difference between sample means larger than observed? 

For  example,  if  the  p  value  is  0.03  we  can  say  a  random  sampling  from  identical  populations  would  lead  to  a  difference
smaller than you observed in 97% of the experiments and larger than you observed in 3% of the experiments.

Said another way, suppose I have a single sample set and I copy it, resultling in two identical sample sets. Now suppose we
perform a significance test on these two identical sample sets. The resuting p-value will be 1.0 because they are exactly the
same. We are essentially doing the same thing here except we have to different sample sets... but we still want to see if they
“like” each other..and in our case we hope they are NOT like each other, which means the p-value will low... below our cut off
value of 0.05.

For our analysis we choose alpha of 0.05. To accept that our two samples are statistically similar the p value would need to
be less than 0.05 (our alpha).

Good reference about the P-Value and significance testing: http://www.graphpad.com/articles/pvalue.htm

Here we go (assuming our samples are normally distributed):

1. Our P value threshold is 0.05, which is our alpha.
2.  The  null  hypothesis  is  the  two  populations  have  the  same  mean.  (Remember  we  have  to  sample  sets,  which  not  the
population.)
3. Do the statistical test to compute the P value.
4. Compare the result  P value to our threshold alpha value. If  the P value is less then our threshold, we will  reject the null
hypothesis and say the difference between our samples is significant. However, if the P value is greater than the threshold,
we cannot reject the null hypothesis and any difference between our samples are not statistically significant.
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TTest@8rowProcessing, setProcessing<D

TTest::nortst : At least one of the p-values in 80.548369, 0.00133837<, resulting from
a test for normality, is below 0.025`. The tests in 8T< require that the data is normally distributed. à

1.31671 µ 10-26

If the above T-Test results (p value) are less then our threshold we can say there is a significant difference between the two
sample sets.

Sample Comparison Tests (when normality may NOT exist)

If our sample sets are not normally distributed, we can not perform a simple t-test. We can perform what are called loca-
tion tests. I did some research on significance testing when non-normal distributions exists. I found a very nice reference:

http://www.statsoft.com/textbook/nonparametric-statistics

The paragraph below (which is from the reference above) is a key reference to what we’re doing here:

...the need is evident for statistical procedures that enable us to process data of “low quality,” from small  samples, on vari-
ables  about  which  nothing  is  known (concerning  their  distribution).  Specifically,  nonparametric  methods were  developed to
be  used  in  cases  when  the  researcher  knows  nothing  about  the  parameters  of  the  variable  of  interest  in  the  population
(hence the name nonparametric). In more technical terms, nonparametric methods do not rely on the estimation of parame-
ters  (such  as  the  mean  or  the  standard  deviation)  describing  the  distribution  of  the  variable  of  interest  in  the  population.
Therefore,  these  methods  are  also  sometimes  (and  more  appropriately)  called  parameter-free  methods  or  distribution-free
methods.

Being  that  I’m  not  a  statistician  but  still  need  to  determine  if  these  sample  sets  are  significant  different,  I  let  Mathematica
determine the appropriate test. Notice that one of the above mentioned tests will probably be the test Mathematica chooses.

Note:  If  we  run  our  normally  distributed  data  through this  analysis  (speically,  the  “LocationEquivalenceTest”),  Mathematica
should detect this and use a more appropriate significant test, like a t-test.
Here we go with the hypothesis testing (assuming our sample sets are not normally distributed):

1. Our P value threshold is 0.05, which is our alpha.
2. The null  hypotheses is the two populations have the same mean. (Remember we have to sample sets,  which is not the
population.)
3. Do the statistical test to compute the P value.
4. Compare the result  P value to our threshold alpha value. If  the P value is less then our threshold, we will  reject the null
hypothesis and say the difference between our samples is significant. (Which is what I’m hoping to see.) However, if  the P
value  is  greater  than  the  threshold,  we  cannot  reject  the  null  hypothesis  and  any  difference  between  our  samples  are  not
statistically significant; randomness, picked the “wrong” samples, etc.
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LocationEquivalenceTest@8rowProcessing, setProcessing<, 8"TestDataTable", "AutomaticTest"<D
SmoothHistogram@8rowProcessing, setProcessing<D
Histogram@8rowProcessing, setProcessing<D

: Statistic P-Value
Kruskal-Wallis 17.28 4.30948µ10-8 , KruskalWallis>
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