Parse Time: Hard vs Soft : No-Load Environment

Author: Craig Shallahamer (craig@orapub.com), Version 1a, 13-July-2012

Background and Purpose

The purpose of this notepad is to simply compare the differences in parse times from hard and soft parsing based on the exec
tion number of a unique SQL statement... in a no-load enviroment

Experimental Data and Loading

Below is all the experimental data. The experiment was run on a Dell single six-core CPU, Oracle 11.2G. According to “
/proc/version”: Linux version 2.6.32-300.3.1.el6uek.x86_64 (mockbuild@ca-build44.us.oracle.com) (gcc version 4.4.4 201007
(Red Hat 4.4.4-13) (GCC)) #1 SMP Fri Dec 9 18:57:35 EST 2011. There was a no outside load on the system; essentially
single user Linux system. For each simular yet unique 30 SQL statements the parse time was gatherd (based on a SQL tra
file) when it was run seven times. Details are presented in the associated blog posting in early July of 2012.

The order of sample data simply the parse time in either only CPU or the total elapsed time (which includes CPU and Oracle w
time).

In[]:=
ssNum = 7;

ssCpu[l] = {22996, 22997, 22996, 22996, 22997, 22996, 22996, 22997,
22996, 22996, 22996, 21997, 22997, 22997, 22997, 21996, 22997, 21997, 22996,
22997, 22996, 22997, 22997, 22997, 22997, 22996, 22996, 22997, 21996, 21997};

ssCpu[2] = {0, O};
ssCpu([3] = {0, O};
ssCpu[4] = {0, O};
ssCpu([5] = {0, O};
ssCpu([6] = {0, O, O, 0, O};
sscpu(7] = {0, O}

ssElp[1] = {23374, 23539, 23438, 23391, 23474, 23376, 23 495, 23 445,
23401, 23437, 23462, 23610, 23469, 23473, 23516, 23384, 23572, 23479, 23 434,
23619, 23478, 23497, 23506, 23515, 23527, 23530, 23614, 23509, 23532, 23 625} ;
ssElp[2] = {126, 132, 128, 132, 127, 131, 126, 127, 126, 128, 136, 126, 127, 129, 133,
130, 134, 129, 132, 132, 137, 132, 132, 129, 133, 129, 128, 161, 128, 128};
ssElp[3] = {25, 24, 24, 24, 24, 25, 25, 25, 25, 24, 25, 24, 38, 25, 39, 25,
25, 41, 24, 25, 25, 28, 25, 25, 25, 25, 39, 25, 40, 25};
ssElp[4] = {18, 18, 18, 29, 17, 28, 17, 28, 18, 18, 28, 28, 17, 29, 17, 28,
17, 22, 17, 19, 22, 18, 18, 17, 18, 18, 18, 29, 17, 18};
ssElp[5] = {17, 25, 29, 17, 22, 17, 18, 29, 17, 18, 18, 17, 32, 19, 17, 18,
18, 29, 18, 18, 18, 31, 18, 19, 18, 17, 29, 18, 18, 29};
ssElp[6] = {17, 18, 18, 23, 17, 17, 29, 18, 17, 17, 17, 17, 18, 18, 17, 18,
18, 18, 29, 18, 17, 18, 17, 29, 18, 17, 18, 17, 18, 18};
ssElp[7] = {17, 18, 18, 17, 18, 19, 18, 19, 17, 17, 18, 17, 18, 17, 17, 18,
23, 17, 18, 18, 18, 18, 17, 18, 18, 18, 17, 18, 29, 18};

Basic Numeric Comparision

No comments.

ParseTime_:
myData = Table[
{
ssidx,
N[Mean[ssElp[ssidx] / 1000]], N[Round[Mean[ssElp[1]] / Mean[ssElp[ssidx]]]],
N[StandardDeviation[ssElp[ssidx]] / 1000], DistributionFitTest [ssElp[ssidx]], Length[ssElp[ssidx]]
}, {ssidx, 1, ssNum}
1;
toGrid = Prepend [myData, {
"Execution”,
"Elapsed Time\nAvg (ms)", "Elapsed Time\nX Times Faster",
"Elapsed Time\nStdev (ms)", "Elapsed Time\nP-Value", "Elapsed Time\nSamples"

31
Grid[toGrid, Frame - All]

Execution [Elapsed Time [Elapsed Time Elapsed Time | Elapsed Time [Elapsed Time

Avg (ms) X Times Faster | Stdev (ms) P-Value Samples

1 23.4907 1. 0.0715822 0.766373 30

2 0.130933 179. 0.00641622 3.70683 x10°° 30

B 3 0.0272667 862. 0.00558281 0 30
4 0.0208 1129. 0.0048023 0 30

5 0.0209333 1122. 0.00520566 0 30

6 0.0188667 1245. 0.00360778 0 30

7 0.0182667 1286. 0.00231834 0 30

Sample Set Normality Tests

Before we can perform a standard t-test hypothesis tests on our data, we need to ensure it is normally distributed...because tf
is one of the underlying assumptions and requirements for properly performing a t-test.

Statistical and visual normality test

Our alpha will be 0.05, so if the distribution fit test results in a value greater than 0.05 then we can assume the data set is inde
normally distributed.

The first test is just to double check to make sure my thinking is correct. Since | creating a normal distribution based on a me
and standard deviation (just happens to be based on the my sample set data), | would expect a p-value (the result) to grea
exceed 0.05. Notice that the more samples | have created (the final number), the closer the p-value approaches 1.0.

In[19]:=
check = DistributionFitTest [

RandomVariate [NormalDistribution[Mean[ssCpu[l]], StandardDeviation[ssCpu[1]]], 10000]];
Do [
pValueCpu = DistributionFitTest[ssCpu[i]];
pValueElp = DistributionFitTest[ssElp[i]];
Print["Sample set ", i, " with ", Length[ssCpu[i]],
" values. P-values: Cpu=", pValueCpu, " Elp=", pValueElp];
cpu = Histogram[ssCpu[i], PlotLabel » "Occurances vs Cpu", AxesLabel -» {"Sample value", "Occurs"}];
elp = Histogram[ssElp[i] , PlotLabel -» "Occurances vs Elp", AxesLabel -» {"Sample value", "Occurs"}];
Print [cpu];
Print[elp];
Print["-—————— -~ "1;
, {1, 1, ssNum}
17
Print["This number should be much greater than 0.05: ", check,

If not try again by re-evaluating."];

ParseTin@arkgi® set 1 with 30 values. P-values: Cpu=0 Elp=0.766373

Occurances vs Cpu
Occurs

25

L L L L L Sample value
21600 21800 22000 22200 22400 22600 22800 23000

Occurances vs Elp
Occurs

Sample value

DistributionFitTest::rectuv :
The argument {0, 0, O, 0, 0, 0, 0, O, O, O, O, O, O, O, 0, 0,0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0} should be a vector or matrix
of real numbers with positive variance. >

Sample set 2 with 30 values. P-values: Cpu=DistributionFitTest | ParseTime_.
{0, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 0,0,0O,0,O0, 0,0, 0}] Elp:3.70683><10’6

Occurances vs Cpu
Occurs

30

25§

20 |

L - - Sample value
02 04 0.6 0.8 1.0

Occurances vs Elp
Occurs

Sample value

130 140 150 160

DistributionFitTest::rectuv :
The argument {0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, 0, 0,0, 0,0,0,0,0,0,0,0,0, 0, 0, 0, 0} should be a vector or matrix
of real numbers with positive variance. >

ParseTin@rkgi® set 3 with 30 values. P-values: Cpu=
DistributionFitTest[{0O, O,0,0,0,0,0,0,0,0}] Elp=0

Occurances vs Cpu
Occurs

30

23

L - - Sample value
02 04 0.6 0.8 10

Occurances vs Elp
Occurs
20

Sample value
45

25 30 35 40

DistributionFitTest::rectuv :
The argument {0, 0O, O, 0, 0, 0, O, O, O, O, O, O, O, O, 0, 0,0, 0,0,0,0,0,0,0,0,0, 0, 0, 0, 0} should be a vector or matrix
of real numbers with positive variance. >

General::stop : Further output of DistributionFitTest::rectuv will be suppressed during this calculation. >

Sample set 4 with 30 values. P-values: Cpu=
DistributionFitTest[{0O, 0O, 0,0,0,0,0,0}] Elp=0

Occurances vs Cpu
Occurs

30

25

20 -

1 Sample value
02 0.4 0.6 0.8 1.0

Occurances vs Elp ParseTime_:
Occurs

20

L - - - - Sample value
30

Sample set 5 with 30 values. P-values: Cpu=
DistributionFitTest[{0O, 0O0,0,0,0,0,0,0,0}] Elp=0

Occurances vs Cpu
Occurs

30

25§

- - - Sample value
02 04 0.6 0.8 1.0

Occurances vs Elp
Occurs

20 |-

Sample value
35

20 25 30

Sample set 6 with 30 values. P-values: Cpu=
DistributionFitTest(| {0, O, O, O, O, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,0,0,0,0,0,0,0,0,0} Elp=0

Occurances vs Cpu
Occurs

30

258

20 -

- - - Sample value
02 04 0.6 0.8 1.0

ParseTime_1a.nb Occurances vs Elp
Occurs

258

20 -

15 -

10 |-

L L L . L Sample value
30

Sample set 7 with 30 values. P-values: Cpu=
DistributionFitTest[{0O, O,0,0,0,0,0,0,0,0}] Elp=0

Occurances vs Cpu
Occurs

30

25§

20 |

15+

10 |-

L L L Sample value
02 0.4 0.6 0.8 1.0

Occurances vs Elp
Occurs

15 -

10

Sample value
18 20 22 24 26 28 30

This number should be much greater than 0.05: 0.219823 If not try again by re-evaluating.

Sample Comparison Tests (when normality exists)

Assuming our samples are normally distributed, now it’s time to see if they are significantly different. If so, then we kn
changing the number of latches and chains indeed makes a significant performance difference...at least statistically.

The null hypothesis is; there is no real difference between our samples sets. We need to statistically prove that any difference
the result of randomness; like we just happened to pick poor set of samples and it makes their difference look much worse thar
really is.

A t-test will produce a statistic p. The p value is a probability, with a value ranging from zero to one. It is the answer to this que
tion: If the populations really have the same mean overall, what is the probability that random sampling would lead to a differen

In[22]:=

For example, if the p value is 0.03 we can say a random sampling from identical populations would lead to a differéAtGE 8Rsal
than you observed in 97% of the experiments and larger than you observed in 3% of the experiments.

Said another way, suppose | have a single sample set and | copy it, resultling in two identical sample sets. Now suppose \
perform a significance test on these two identical sample sets. The resuting p-value will be 1.0 because they are exactly t
same. We are essentially doing the same thing here except we have to different sample sets... but we still want to see if th
“like” each other..and in our case we hope they are NOT the like each other, which means the p-value will low... below our cut
value of 0.05.

For our analysis we choose alpha of 0.05. To accept that our two samples are statistically similar the p value would need to
less than 0.05 (our alpha).

Good reference about the P-Value and significance testing: http://www.graphpad.com/articles/pvalue.htm
Here we go (assuming our samples are normally distributed):

1. Our P value threshold is 0.05, which is our alpha.

2. The null hypothesis is the two populations have the same mean. (Remember we have to sample sets, which not the popu
tion.)

3. Do the statistical test to compute the P value.

4. Compare the result P value to our threshold alpha value. If the P value is less then our threshold, we will reject the null hypotl
sis and say the difference between our samples is significant. However, if the P value is greater than the threshold, we canr
reject the null hypothesis and any difference between our samples are not statistically significant.

Do [
pValueCpu = TTest[{ssCpu[i], ssCpu[i+1]}];
Print["Cpu: (", Length[ssCpu[i]],

" values) pvalue between sample set ", i, " and ", i+1, " is ", pValueCpu];
pValueElp = TTest[{ssElp[i], ssElp[i+1]}];
Print["Elp: (", Length[ssElp[i]],

" values) pvalue between sample set ", i, " and ", i+1, " is ", pvValueElp];

r
{i, 1, ssNum - 1}

1;

TTest::invitd : The argument
{{22996, 22997, 22996, 22996, 22997, 22996, 22996, 22997, 22996, 22996, 22996, 21997, 22997, 22997, 22997, 21996, 22997,
21997, 22996, 22997, 22996, 22997, 22997, 22997, 22997, 22996, 22996, 22997, 21996, 21997}, {0, 0, 0,0, 0,0, 0,0, 0, 0, O, O,
o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0}} should be a vector of real numbers with positive variance, a real matrix
with positive definite covariance and dimension less than length, or two such vectors or matricies of equal dimension. >

Cpu: (30 values) pvalue between sample set 1 and 2 is
TTest [{{22996, 22997, 22996, 22996, 22997, 22996, 22996, 22997, 22996, 22996, 22996, 21997, 22997, 22997,
22997, 21996, 22997, 21997, 22996, 22997, 22996, 22997, 22997, 22997, 22997, 22996, 22996, 22997,
21996, 21997}, {0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, 0O,0,0,0,0,0,0,0,0,0,0,0}}]
TTest::nortst : At least one of the p-values in {0.766373, 3.70683 x 10’6}, resulting

from a test for normality, is below 0.025 ". The tests in {T} require that the data is normally distributed. >
Elp: (30 values) pvalue between sample set 1 and 2 is 1.07723 x10°7®

TTest::invitd : The argument
{{0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,o0,0,o0,o0,o0,o,o0}{o,o,o,o,°-.o-°,-o°.o,o°.-.o,°-o.,°0°,°o°,°0,0,0,0,0,0,0,0O0,
0, 0,0, 0, 0, 0}} should be a vector of real numbers with positive variance, a real matrix with
positive definite covariance and dimension less than length, or two such vectors or matricies of equal dimension. >
Cpu: (30 values) pvalue between sample set 2 and 3 is
rrest({{o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, 0,0,0,0,0,O0,0,O0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 0,0,0,60,60,60,0,0,0,0,0,0,0,0,0}}]

TTest::nortst : At least one of the p-values in {3.70683>< 1078, 0}, resulting from
a test for normality, is below 0.025 . The tests in {T} require that the data is normally distributed. >
Elp: (30 values) pvalue between sample set 2 and 3 is 9.48079 x 107°°

TTest::invitd : The argument
{{0, 0,0, 0 {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,

ParseTimgn&&P:stop : Further output of TTest::invltd will be suppressed during this calculation. >

Cpu: (30 values) pvalue between sample set 3 and 4 is
rTest({{o0, 0, 0, 0, O},
{o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, 0}}]

TTest::nortst : At least one of the p-values in {0, 0}, resulting from a
test for normality, is below 0.025 ". The tests in {T} require that the data is normally distributed. >

General::stop : Further output of TTest::nortst will be suppressed during this calculation. >

Elp: (30 values) pvalue between sample set 3 and 4 is 0.0000111383

Cpu: (30 values) pvalue between sample set 4 and 5 is
TTest({{0, O,
{0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 0

0 0
Elp: (30 values) pvalue between sample set 4 and 5 is 0.918228

Cpu: (30 values) pvalue between sample set 5
TTest({{0, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
{0, o, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0

5

Elp: (30 values) pvalue between sample set

Cpu: (30 values) pvalue between sample set 6
TTest[{{0, O, O, O, O, O, O, O, 0O, 0, 0,0, 0,0,
{0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, 0, 0,0,0

6

Elp: (30 values) pvalue between sample set

If the above T-Test results (p value) are less then our threshold we can say there is a significant difference between the t
sample sets.

Sample Comparison Tests (when normality does NOT exist)

If our sample sets are not normally distributed, we can not perform a simple t-test. We can perform what are called locati
tests. | did some research on significance testing when non-normal distributions exists. | found a very nice reference:

http://www.statsoft.com/textbook/nonparametric-statistics
The paragraph below (which is from the reference above) is a key reference to what we’re doing here:

...the need is evident for statistical procedures that enable us to process data of “low quality,” from small samples, on variabl
about which nothing is known (concerning their distribution). Specifically, nonparametric methods were developed to be used
cases when the researcher knows nothing about the parameters of the variable of interest in the population (hence the nar
nonparametric). In more technical terms, nonparametric methods do not rely on the estimation of parameters (such as the me
or the standard deviation) describing the distribution of the variable of interest in the population. Therefore, these methods ¢
also sometimes (and more appropriately) called parameter-free methods or distribution-free methods.

Being that I'm not a statistician but still need to determine if these sample sets are significant different, | let Mathematica det
mine the appropriate test. Notice that one of the above mentioned tests will probably be the test Mathematica chooses.

Note: If we run our normally distributed data through this analysis (speically, the “LocationEquivalenceTest”), Mathematica shot
detect this and use a more appropriate significant test, like a t-test.

Here we go with the hypothesis testing (assuming our sample sets are not normally distributed):

1. Our P value threshold is 0.05, which is our alpha.

2. The null hypotheses is the two populations have the same mean. (Remember we have to sample sets, which is not the popu
tion.)

3. Do the statistical test to compute the P value.

4. Compare the result P value to our threshold alpha value. If the P value is less then our threshold, we will reject the null hypotl
sis and say the difference between our samples is significant. (Which is what I’'m hoping to see.) However, if the P value
greater than the threshold, we cannot reject the null hypothesis and any difference between our samples are not statistice
significant; randomness, picked the “wrong” samples, etc.

10

ParseTime_:

myData = Table|[

{
Y,
N[Round [MannWhitneyTest [{ssElp[1l], ssElp[y]}], 1/1000]],
N[Round [MannWhitneyTest [{ssElp[2], ssElp[y]}], 1/ 1000]],
N[Round [MannWhitneyTest [{ssElp[3], ssElp[y]}], 1/1000]],
N[Round [MannWhitneyTest [{ssElp[4], ssElp[y]}], 1/1000]],
N[Round [MannWhitneyTest[{ssElp[5], ssElp[y]}], 1/ 1000]],
N[Round [MannWhitneyTest [{ssElp[6], ssElp[y]}], 1/1000]],
N[Round [MannWhitneyTest[{ssElp[7], ssElp[y]}], 1/ 1000]]

}, {y, 1, ssNum}

1;

toGrid = Prepend [myData, {
mom, mgw wgw Twgw Tmgw o wgn wgn wguy
1;
Grid[toGrid, Frame - All]

- 1 2 3 4 5 6 7
1(0.994 0. 0. 0 0. 0.

2 0. 0.994 0. 0 0. 0.

3 0. 0. 0.994 0. 0. 0. o
4 0. 0. 0. 0.994(0.72 (0.112(0.114
5 0. 0. 0. 0.709(0.994 (0.055(0.071
6 0. 0. 0. 0.115(0.056 (0.994 [0.757
7 0. 0. 0. 0.118 (0.074 (0.745(0.994
Do [

CpuHist = SmoothHistogram[{ssCpu[i], ssCpu[i+1]}];
CpuTestl = MannWhitneyTest[{ssCpu[i], ssCpu[i+1]}];
CpuTest2 = LocationEquivalenceTest[{ssCpu[i], ssCpu[i+ 1]}, {"TestDataTable", "AutomaticTest"}];
Print["Cpu: (", Length[ssCpu[i]], " values) Between sample ",
i, " and ", i+1, ". Testl=", CpuTestl, " Test2=", CpuTest2];
Print [CpuHist];
Print ["-—-—- - "1;
ElptHist = SmoothHistogram[{ssElp[i], ssElp[i+1]}];
ElpTestl = MannWhitneyTest[{ssElp[i], ssElp[i +1]}];
ElpTest2 = LocationEquivalenceTest[{ssElp[i], ssElp[i + 1]}, {"TestDataTable", "AutomaticTest"}];
Print["Elp: (", Length[ssElp[i]], " values) Between sample ",
i, " and ", i+1, ". Testl=", ElpTestl, " Test2=", ElpTest2];
Print [ElptHist];
Print[

, {1, 1, ssNum - 1}

1;

MannWhitneyTest::invitd : The argument
{{22996, 22997, 22996, 22996, 22997, 22996, 22996, 22997, 22996, 22996, 22996, 21997, 22997, 22997, 22997, 21996, 22997,
21997, 22996, 22997, 22996, 22997, 22997, 22997, 22997, 22996, 22996, 22997, 21996, 21997}, {0, 0, 0,0, 0, 0, 0, 0, 0, 0, O, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0}} should be a vector of real numbers with positive variance, a real matrix
with positive definite covariance and dimension less than length, or two such vectors or matricies of equal dimension. >
Table::iterb : Iterator
{Statistics‘LocationEquivalenceTestingDump‘i, If[Min[0, DistributionFitTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,0.,0.,0., 0., 0.,
0.,0,0.,0.,0.,0.,0.,0.,0.,0.,0.}]]] = 0.025, {(KSampleT}, {KruskalWallis}]}
does not have appropriate bounds. >
Table::iterb : Iterator
{Statistics‘LocationEquivalenceTestingDump‘i, If[(Min[0, DistributionFitTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,0.,0.,0.,0.,0.,0., 0.,
0.,0.,0.,0.,0.,0.0.,0.,0.,0.,0.}]]] =0.025, {KSampleT}, {KruskaIWaIIis}]}
does not have appropriate bounds. >
Table::iterb :
Iterator {Statistics “LocationEquivalenceTestingDump i, Table[Statistics “LocationEquivalenceTestingDump iTestNameParser[
Statistics “LocationEquivalenceTestingDump * i][HypothesisTestData[<<LocationEquivalenceTest>>]], {
Statistics “LocationEquivalenceTestingDump i, If[Min[0, DistributionFitTest[{<«<30>}]] = 0.025, { ...
T}, {KruskalWallis}]}]} does not have appropriate bounds. >

ParseTimgpla:Nfform : Argument Statistics LocationEquivalenceTestingDump "i at position 2 does not have the correct form for an iterator.

Transpose::nmtx : The first two levels of the one-dimensional list
{Table[If[Length[Statistics “LocationEquivalenceTestingDump i] == 0, Statistics ~LocationEquivalenceTestingDump i,
Statistics “LocationEquivalenceTestingDump ™ i[[l]]], {Statistics “LocationEquivalenceTestingDump i, TabIe[HypothesisTestData[<<
LocationEquivalenceTest>], Statistics ' LocationEquivalenceTestingDump "i]}], <1}
cannot be transposed. >

Transpose::nmtx : The first two levels of the one—-dimensional list
{Statistics) LocationEquivalenceTestingDump‘iFormatTestNames[If[Min[O, DistributionFitTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
o,o0.,0,0.,0,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}]] = 0.025, {KSampleT}, {KruskaIWaIIis}]]}
cannot be transposed. >

Table::itform : Argument Statistics ~LocationEquivalenceTestingDump "i at position 2 does not have the correct form for an iterator. >

Transpose::nmtx : The first two levels of the one-dimensional list
{Table[If[Length[Statistics “LocationEquivalenceTestingDump i] == 0, Statistics “LocationEquivalenceTestingDump i,
Statistics “LocationEquivalenceTestingDump * i[[l]]], {Statistics “LocationEquivalenceTestingDump i, TabIe[HypothesisTestData[«
LocationEquivalenceTest>], Statistics “LocationEquivalenceTestingDump i]}], <<1>>}
cannot be transposed. >

General::stop : Further output of Transpose::nmtx will be suppressed during this calculation. >

Join::headsd : Expression
Transpose[{Statistics‘LocationEquivalenceTestingDump‘ iFormatTestNames[If[Min[O, DistributionFitTest[{<«<30>}]] = 0.025, {KSampleT},
{KruskaIWaIIis}]]}] at position 1 is expected to have head Transpose for all subexpressions through level 2. >

Table::itform : Argument Statistics ~LocationEquivalenceTestingDump "i at position 2 does not have the correct form for an iterator. >
General::stop : Further output of Table::itform will be suppressed during this calculation. >

Join::headsd : Expression
Transpose[{Statistics‘LocationEquivaIenceTestingDump‘ iFormatTestNames[If[Min[O, DistributionFitTest[{<«<30>>}]] = 0.025, {KSampleT},
{KruskaIWaIIis}]l}] at position 1 is expected to have head Transpose for all subexpressions through level 2. >

Join::heads : Heads List and Transpose at positions 1 and 2 are expected to be the same. >

Join::headsd : Expression
Transpose[{Statistics‘LocationEquivaIenceTestingDump‘ iFormatTestNames[If[Min[O, DistributionFitTest[{<«<30>>}]] = 0.025, {KSampleT},
{KruskaIWaIIis}]]}] at position 2 is expected to have head List for all subexpressions through level 2. >

General::stop : Further output of Join::headsd will be suppressed during this calculation. >

12 Cpu: (30 values) Between sample 1 and 2. Testl= ParseTime_.

MannWhitneyTest[{{22996, 22997, 22996, 22996, 22997, 22996, 22996, 22997,
22996, 22996, 22996, 21997, 22997, 22997, 22997, 21996, 22997, 21997, 22996,
22997, 22996, 22997, 22997, 22997, 22997, 22996, 22996, 22997, 21996, 21997},
{0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, 0,0,0,0,O0,O0,O0,0,0,0,0,0}}] Test2=

{Grid[Join[{{, Statistic, P-Value}}, Transpose[{Statistics “LocationEquivalenceTestingDump " iFormatTestNames[If[Min[0, DistributionFitTest[{0., 0., 0., 0.,
o,o,o0,o0,0,0,0,0,0,0,0.,0,o0,0,o0,0.,0.,0,0,0.,0,0.,0.,0.,0., 0.}]] = 0.025, {(KSampleT}, {KruskalWallis}]]}],
Transpose[{TabIe[If[Length[Statistics “LocationEquivalenceTestingDump "i] == 0, Statistics " LocationEquivalenceTestingDump "i,

Statistics ~LocationEquivalenceTestingDump "i[1]], {Statistics ~LocationEquivalenceTestingDump "i,
Table[HypothesisTestData[<«LocationEquivalenceTest>], Statistics ~LocationEquivalenceTestingDump "i]}],
If[lm[TabIe[Statistics “LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[<«LocationEquivalenceTest>],
Statistics “LocationEquivalenceTestingDump i], {Statistics ~LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser[Statistics *LocationEquivalenceTestingDump " i][HypothesisTestData[
<LocationEquivalenceTest>]], {Statistics *LocationEquivalenceTestingDump "i, If[Min[0, DistributionFitTest[{0., 0., 0., 0., 0., 0., 0.,
o.,o0.,0o0.,0.,0,0,0.,0.,0,0,0.,0.,0.,0,0.,0.0.,0.,0.,0.,0.,0., 0.}]] = 0.025, {KSampleT}, {KruskalWallis}]}]}]] <

, Clip[Re[N[Table[Statistics " LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[
10000
<«LocationEquivalenceTest>>], Statistics “LocationEquivalenceTestingDump "i], {Statistics “LocationEquivalenceTestingDump "i,
Table[Statistics *LocationEquivalenceTestingDump " iTestNameParser|[Statistics *LocationEquivalenceTestingDump " i][HypothesisTestData[
«<LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump "i, If[Min[0, DistributionFitTest[{0., 0., 0., 0., 0., 0., 0.,
o,o,o0,o0,0,0,o0,0.,o0.,0,0,0,o0.,0,0.,0.,0.,0.,0.,0.,0.,0.,0.}]]] = 0.025, {(KSampleT}, {KruskalWallis}]}1}],
MachinePrecision]], {0, 1}], N[Table[Statistics *LocationEquivalenceTestingDump " iGetPValueForSpecificTest[
HypothesisTestData[<«LocationEquivalenceTest>], Statistics LocationEquivalenceTestingDump "],
{Statistics “LocationEquivalenceTestingDump "i, Table[Statistics *LocationEquivalenceTestingDump " iTestNameParser[
Statistics ~LocationEquivalenceTestingDump "i][HypothesisTestData[<«LocationEquivalenceTest>]],
{Statistics “LocationEquivalenceTestingDump i, If[(Min[0, DistributionFitTest({0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0,0,0.,0.,0,0.,0,0.,0.,0.,0.,0., 0., 0., 0., 0.J]] > 0.025, (KSampleT)}, {KruskalWallis}}}}l, MachinePrecision] |||, 2|,
Alignment - {Left, Automatic}, Dividers — {{2 — GrayLevel[0.7]}, {2 —» GrayLevel[0.7]}}, Spacings -
Automaticl , Min|
0,
DistributionFitTest |
{0., 0., 0.,0.,0.,0.,0.,0.,0.,0.,
6., 0., 0., 0., 0.,0.,0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,0.,0.,0.,0.}]] 20.025}

0.60 -

040 -

Elp: (30 values) Between sample 1 and 2. Testl=
Statistic P-Value

KruskalWallis}
Kruskal-Wallis | 44.3597 3.34347x107%° '

2.87183 x 10711 TestZ:{

ParseTime_1a.nb

0.100

0075 1

0.050 [+

0.025 [+

MannWhitneyTest::invitd : The argument
{0, 0,0o0,o0,o0,o0}{0,o0,0,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,0, 0,0, 0, 0}} should be a vector of real numbers with positive variance, a real matrix with
positive definite covariance and dimension less than length, or two such vectors or matricies of equal dimension. >

Join::heads : Heads List and Transpose at positions 1 and 2 are expected to be the same. >

Cpu: (30 values) Between sample 2 and 3. Testl=
MannwhitneyTest[{{O, O},
{, o, o, o0, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O}}]

Test2= {Grid[]oin[{[, Statistic, P-Value}}, Transpose[{Statistics ' LocationEquivalenceTestingDump "~ iFormatTestNames|

If[DistributionFitTest({0., 0., 0., 0., 0., 0., 0., 0., O., O., 0., 0., 0., 0., 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 0., 0., 0.}]] = 0.025 &&
PearsonChiSquareTest({0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,,0.,,0.,,0.,0.,0.,0.,0.,0.,0
o,o.,o0.,0,0,0,0.,0.,o0,0,o0.,0o0.,o0,o0,o0,0o0.,o0,o0,o0,o0.,o0,o0,0,o0.,o0.,0,0,0.,0.0.,0.,0.,0.},
{0.,0.,0,o0,o0,o0,o0,0.,0.,0.,,0,o0.,o0.,o0,0,0.,0.,0.,o0,o0.,o0,o0,0.,0,0.,o0.,o0.,0,0,0.,0.,0.,0.,0.,,0.
o.,o0.,o0.,o0,0o0,0,0,0.,0.,0.,0.,0,o0.,0,o0,o0.,o0,0.,0,0.,0.,0.,0.,0.,0.}]] > 0.05, {KSampleT}, {KruskalWallis}]]}],
Transpose[{TabIe[lf[Length[Statistics “LocationEquivalenceTestingDump "i] == 0, Statistics LocationEquivalenceTestingDump "i,

Statistics ~LocationEquivalenceTestingDump "i[1]], {Statistics ~LocationEquivalenceTestingDump "i,
Table[HypothesisTestData[<«LocationEquivalenceTest>], Statistics ~LocationEquivalenceTestingDump "i]}],

If[lm[TabIe[Statistics “LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[<«LocationEquivalenceTest>],

Statistics “LocationEquivalenceTestingDump i], {Statistics ~LocationEquivalenceTestingDump i,

Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser[Statistics ~LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump i,
If[DistributionFitTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,0.,0.,0.,0.,0.,0.,0.,,0.,,0., 0., 0., ., 0.,0.

0.025 &&PearsonChiSquareTest[{o0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0,,0,,0,,0,,0,,0,,0.,0.,0.,,0.,,0.,,0.,0.,,0., 0.,
9.,0,0,0,0,0o0,0,0.,0.,0.,o0,o0,o0,o0,o0,0.,0.,0.,o0,o0.,o0,o0,0,0.,0.,o0.,o0,o0.,0.,0.,0.,0.,0.},{0.,,0.,0
o.,o.,o0.,o0,o0,0,0,0.,0.,0,0.,0,0o0.,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,0,0.,0.,0.,0.,0.,

1

o,o,o0,o0,0,0,0,0,0,0,o0.,o0,0,0,0.,0.,0.,0.,0.,0., 0.})] >0.05, {(KSampleT}, {KruskalWallis}}}]}]] <

10000
Clip[Re[N[Table[Statistics " LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«LocationEquivalenceTest>],
Statistics “LocationEquivalenceTestingDump "i], {Statistics *LocationEquivalenceTestingDump i,
Table[Statistics ~LocationEquivalenceTestingDump " iTestNameParser([Statistics “LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump " i, If[DistributionFitTest[

{0, 0,o0.,0,0,0,0,0,0,0,0,0,0,0,0,o0,0,0,0,o0,0,0,0.,0.,0,0.,0.,0.,0.,0.}]] = 0.025&&
PearsonChiSquareTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O, 0., O, O, O, 0O, O0,0O0.,o0.,o0,o0,o0.,0.,o0,0,0.,0.,0.,0.,O0.,
0,o0,o0,o0,0,0,0,0,0,0,0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,0,0,o0.,0.,0.,}{0.,0.,0.,0.,0.,0.,
o,o0,o0,0,0,0,0,0,0,0,0,0.,0,0,o0,o0,o0,o0,o0,o0,o0,0,o0,o0,0,0,0,o0,0,0,0,0.,0.,0,0,0.,0.,

o.,o0.,0,0,0,0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 0., 0.}]] >0.05, {KSampleT}, {KruskalWallis}]}]}], MachinePrecision]], {0, 1}],
N[Table[Statistics ~LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«<LocationEquivalenceTest>>],
Statistics ~LocationEquivalenceTestingDump " i], {Statistics *LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser([Statistics ~LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>>]], {Statistics ~LocationEquivalenceTestingDump "i,
If[DistributionFitTest({o0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O., O., O, 0., 0., 0., 0, 0,0, 0., 0.,0.0.,0.,0.,0.,0.,0.,0.}]] = 0.025&&

PearsonChiSquareTest[{0., 0., 0., 0., 0., 0 o,o0.,0,0.,0,0.,0,0,0.,0.,0.,0.,0.,0,0.,0.,0.,,0.,0.,0.,0.,0.,0., 0.,
o.,o0.,o0,0,0,0,0.,0.,0.,0.,0,0.,0,0.,0.,0.,0.,0.,0.,0,0.,0.,0.,0.,0.,0.,0.,0.,0.},1{0.,0.,0.,0.,0.,0.,
o.,o.,o0,0,0,0,0,0,0.,,0,0,0.,0.,0.,0.,0.,0,0,0.,0,0,0,0.,0,0,0,0.,0.,0.,0.,0,0.,0.,0.,0.,0.
0.,0.,0.0.,0.0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 0., 0., 0.}] > 0.05, {KSampleT}, {KruskalWallis}]}]}], Machineprecisionj]}],

2] Alignment — {Left, Automatic}, Dividers - {{2 » GrayLevel[0.7]}, {2 » GrayLevel[0.7]}},

Spacings -
Automatic] 0
DistributionFitTest |

14

0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,

0.}] =0.025 &&
PearsonChiSquareTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O.,

0.,0.,0.,
0.,0.,0.,
0.,0.,0.,
0., 0., 0.,
0.,0.,0.,
0.,0.,0.,
0., 0., 0.,
0.,0.,0.,
0.,0.,0.,
0., 0., 0.,
{0., 0., 0.,
0.,0.,0.,
0., 0., 0.,
0.,0.,0.,
0.,0.,0.,
0., 0., 0.,

0.,0.,0.,

0.,
0.,

0., 0.,

0., 0.,

0., 0.,

0., 0.,

0., 0.,

0., 0.,

0., 0., 0.,

0., 0.},
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,

0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,

0.,0.,0.}] > o.05}

0.60 =

Elp: (30 values)

1.63511 x 10711 TestZ:{

Between sample 2 and 3. Testl-=
Statistic P-Value

KruskalWallis}
Kruskal-Wallis | 45.4636 3.40156x10°2° '

ParseTime_:

ParseTinggysla.

0.100

0.075

0.050

0.025

MannWhitneyTest::invitd : The argument
{{0, o, 0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,o0,0,0,0,o0,o0,0,o0,o,o0,-oo,o,°o.o°,o-.°.-o°,o,°-°do,o-.°.-.o,.-°o,o-°°-°o,°0,0,0,0,0,0,O0,:o0,
0,0,0,0, 0, 0}} should be a vector of real numbers with positive variance, a real matrix with
positive definite covariance and dimension less than length, or two such vectors or matricies of equal dimension. >

General::stop : Further output of MannWhitneyTest::invitd will be suppressed during this calculation. >
Join::heads : Heads List and Transpose at positions 1 and 2 are expected to be the same. >
General::stop : Further output of Join::heads will be suppressed during this calculation. >

Cpu: (30 values) Between sample 3 and 4. Testl=
MannWhitneyTest({{O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,0,0,O0O,O,O,O,0O,0,0,0,0},
{o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O}}]
TestZ:{Grid[Join[:(, Statistic, P-Value}}, Transpose[{Statistics ' LocationEquivalenceTestingDump “iFormatTestNames|
If[DistributionFitTest({0., 0., 0., 0., 0., 0., O., 0., 0., O., O, 0., 0., 0.,0.,0.,o0.,o0.,o0,o0,o0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}] > 0.025&&
PearsonChiSquareTest({o., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0,0, 0,0.,0,0,0.,0.,0.,0.0.,0.,0.,
o,o,o0,o0,0,0,o0,0,o0,0,0,0,0,0,o0,o0,o0,o0,0,o0,o0,o0.,0,0.,0,0.,0,0.,0.,0.,0.,0.,0.},
{0, o.,o0.,o0.,0,0o0,0.,o0,o0,0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,0,0.,0.,0.,0,O0.,
o,o.,o0.,o0,o0,0,o0,0,0.,0,0.,o0,0.,0,0,o0.,0,0.,0.,0.,0.,0.,0.0.,0.}]] > 0.05, {KSampleT}, {KruskalWallis}]]}],
Transpose[{TabIe[If[Length[Statistics “LocationEquivalenceTestingDump "i] = 0, Statistics " LocationEquivalenceTestingDump "i,
Statistics *LocationEquivalenceTestingDump “i[1]], {Statistics ~LocationEquivalenceTestingDump i,
Table[HypothesisTestData[<«LocationEquivalenceTest>], Statistics ~LocationEquivalenceTestingDump "i]}],
Ifllm[TabIe[Statistics‘LocationEquivalenceTestingDump‘iGetPVaIueForSpecificTest[HypothesisTestData[<<LocationEquivalenceTest>>],
Statistics “LocationEquivalenceTestingDump "i], {Statistics ' LocationEquivalenceTestingDump i,

Table[Statistics “LocationEquivalenceTestingDump “iTestNameParser[Statistics " LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics LocationEquivalenceTestingDump " i,

If[DistributionFitTest({0., 0., 0., 0., 0., 0., O., 0., O., O., O., O., O., O., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,0.,0.,0.,0.,0.}]] =
0.025 && PearsonChiSquareTest[{o., 0., 0., 0., 0., 0., 0., 0., 0., O., O, O., O., O, 0., 0., 0,0, 0.,0.,0.,0.,0.,0.,0.,0.,0.,
o,o.,o0,o0,0,0,o0,o0,0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0,0,0.,0.,0.,{0.,0.,0.,
o,o.,o0,o0,o0,0,o0,0,0,0,0.,o0,0o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,0,0.,0.,0.,0.,0.,

1

0,o0,0.,0.,0.,0,0,0,0,0,0.,0.,0.,0.,0,0,0,0,0.,0.,0.}] >0.05, {KSampleT}, {KruskalWallis}]}]}]] <

10000
Clip[Re[N[Table[Statistics *LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«<LocationEquivalenceTest>],
Statistics ~LocationEquivalenceTestingDump "i], {Statistics ~LocationEquivalenceTestingDump " i,
Table[Statistics ~LocationEquivalenceTestingDump " iTestNameParser[Statistics *LocationEquivalenceTestingDump "i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump " i, If[DistributionFitTest[
{0, 0,o0.,0.,0,0,0.,0.,0,0,0.,o0,o0,o0,o0,o0,o0,o0,o0,o0.,o0,0,0,0.,0.,0.,0.,0.,0.,0.}]] = 0.025&&
0.,0.,0.,0.,0.,

PearsonChiSquareTest([{0., 0., 0., 0., 0., 0., 0., 0., 0., o,o0,0,0,0,0.,0,0,0.,0,0.,0.,0.,0.,0.,,0., 0,
o.,o0.,o0.,o0,0,0,o0,0.,o0.,o0,o0.,o0,o0.,o0,o0,o0.,o0,o0,o0.,o0,o0.,o0,o0,o0.,o0,o0,o0.,o0,o0.,0.{0.,0.,0.,0.,0.,0.,
o,o.,o0,o0,0o0,0,o0,0.,o0,0,0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,0.,0,0.,0.,0,0.,0.,
o.,o0.,0,0,0,0,0.,0.,0.,0.,0.,,0.,,0.,0.,0., 0., 0.}]] >0.05, {(KSampleT}, {KruskalWallis}]}]}], MachinePrecision]], {0, 1}],

N[Table[Statistics ~LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«<LocationEquivalenceTest>],
Statistics “LocationEquivalenceTestingDump "i], {Statistics ~LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser[Statistics *LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump "i,
If[DistributionFitTest({o0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O, 0.,0,0.,0.,o.,o,o0.,o0.,o0.,0.,0.,0.0.0.,0.,0.}]]=0.025&&

PearsonChiSquareTest({o0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O., O, 0., 0., 0., 0., 0., 0., 0, 0., 0.,0.,0.,0,0.,0.0.,0.,0.,0.,0.,
o,o,o0,o0,0,0,0.,0.,0.,o0,0o0,o0,o0,0.,0.,0.,o0.,o0,o0,o0,o0,0.,0.,0.,o0.,o0.,0,o0.,0.}1{0.,0.,0.,0.,0.,0.,
o,o.,o0,o0,0.,0,0,0,o0,0.,o0,o0,o0.,o0.,o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 0., 0., 0., 0.]] > 0.05, {KSampleT}, {KruskalWallis}J}}1, Machineprecision]]}],

2], Alignment — {Left, Automatic}, Dividers — {{2 — GrayLevel[0.7]}, {2 — GrayLevel[0.7]}},

16 ParseTime_:

Automatic] o

DistributionFitTest [

{0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.}] =0.025 &&
PearsonChisquareTest([{0., 0., 0., 0., O., O., 0., 0., 0., 0., O.,

0., 0., 0., 0.,

0.,0.,0.,0.,

0., 0., 0.,0.,0.,

0., 0.,0.,0.,0.,

0., 0.,0.,0.,0.,

0., 0., 0.,0.,0.,

0., 0.,0.,0.,0.,

0., 0.,0.,0.,0.,

0., 0., 0.,0.,0., 0.,

0.,0.,0.,0.,0.},

{0., 0., 0., 0., 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,

0., 0., 0.,0.,0., 0., 0.,

0., 0., 0.,0.,0.,0.,0.,0.,

Ocy Oop Ocp 0oy Oop 0oy Oy Oop

0., 0., 0.,0.,0.,0.,0.,0.,

0., 0., 0.,0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,0.}] >o.05}

0.60.

Elp: (30 values) Between sample 3 and 4. Testl=
0.000150955 Test2={ Statistic P-Value yrygkalwallis)

0.100
0.075
0.050

ParseTirggpslia.nb
0025

Cpu: (30 values) Between sample 4 and 5. Testl=
MannWhitneyTest([{{O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, 0,0,0,0,O0O,O,0O,0,0,0,0,0},
{o, o, o0, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O}}]
TestZ:{Grid[Join[{[, Statistic, P-Value}}, Transpose[{Statistics ' LocationEquivalenceTestingDump " iFormatTestNames|[
If[DistributionFitTest({0., 0., 0., 0., 0., 0., O., 0., 0., O., O., 0., 0., 0., 0, 0., 0.,0.,0.,0.,,0.,0.,0.,0.0.0.,0.,0.,0.,0.}] >0.025&&
PearsonChiSquareTest({o., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0,,0,0.,0.,0,0.,0.,0.,0.,0.,0.,,0.,
o,o0.,o0,o0,0,0,o0,0.,o0,0,0,o0,o0.,o0,o0,o0,o0,o0,o0,o0,o0,o0,o0,0,0,0.,o0,0.,0.,0.,0.0.,0.},
{0., 0., 0,0.,0.,0.,0,0.,0,0,0.,0,o0.,o0,0o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,0.,0,0.,0.,0.,0.,0.,
o,o.,o0.,0.,0,0,0.,0.,0.,0.,o0.,o0.,o0,0,o0.,0.,0.,0.,0.,0.0.,0.,0.,0.,0.}]] >0.05, {KSampleT}, {KruskalWallis}]]}],
Transpose[{TabIe[lf[Length[Statistics *LocationEquivalenceTestingDump "i] == 0, Statistics " LocationEquivalenceTestingDump "i,
Statistics “LocationEquivalenceTestingDump "i[1]], {Statistics ~LocationEquivalenceTestingDump "i,
Table[HypothesisTestData[«LocationEquivalenceTest>], Statistics ~LocationEquivalenceTestingDump "i]}],
If[lm[TabIe[Statistics‘LocationEquivalenceTestingDump‘iGetPVaIueForSpecificTest[HypothesisTestData[<<LocationEquivalenceTest>>],
Statistics “LocationEquivalenceTestingDump i], {Statistics ~LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump "iTestNameParser[Statistics *LocationEquivalenceTestingDump "i][
HypothesisTestData[<«LocationEquivalenceTest>>]], {Statistics ~LocationEquivalenceTestingDump "i,

If[DistributionFitTest({0., 0., 0., 0., 0., 0., 0., 0., 0., O., O., 0., 0., 0., O, 0., 0.,0.,0.,O0.,o0.,o0.,o0.,0.,0.,0.0.,0.,0.,0.}]] >
0.025 &&PearsonChiSquareTest({o0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0,,0,,0,,0.,,0.,,0.,,0.,0.,0.,,0., 0.,
o.,o0.,0.,0.,0,0.,0,o0.,0,o0,0.,o0.,0,0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0.,0.,0.,0.,0.,{0.,0.,0.,
o.,o.,o0.,o0,o0,0,o0,0,0,0,0.,0,0o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,0,0.,0.,0.,0.,0.,

1

o.,o0.,o0.,0.,0.,0,0.,0.,0.,0.,0.0.0.,0.,0.,0.,0.,0.,0.,0., 0.}]] > 0.05, {(KSampleT}, {KruskalWallis}]}]}]] < ,
10000
Clip[Re[N[Table[Statistics “LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[<«LocationEquivalenceTest>],
Statistics “LocationEquivalenceTestingDump "i], {Statistics *LocationEquivalenceTestingDump i,
Table[Statistics ~LocationEquivalenceTestingDump " iTestNameParser([Statistics “LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics “LocationEquivalenceTestingDump i, If[DistributionFitTest[
{0, 0.,0.,0.,0,0,0.,0.,0,0.,0.0.,0.,0.,0.,0., ,0,0.,0.,0,0,0.0.,0.,0.,0.}] =0.025&&
PearsonChiSquareTest[{0., 0., 0., 0., 0., 0.,0.,0.,0. 0 0., 0. 0.,0.,0.,0.,0.,0.,0.,0.,0.,
o,o0.,o0.,0.,0,0,0.,0.,0.,0,0.,0.0.,0.,0.,0. . 0,0,0. ,0,0.,0.,1{0,0.,0.0.,0.,0.,
0.,0 0.,0.0.,0. ., 0.,0.,0. 0
5,

°_°
<)
<)

0.,
, 0.
0

0
, 0.
0

0.,
, 0.
0

0,0
,0.,0.
0,0

0
5 @,
0

0.,
, 0.
o,o0.,0.,0.,0,0.,0.,0.0.,0., 50,0, , ,0,0,0.,0.,0,0,0.,0.,0.,0.,0.,
o.,,0.,0.,0.,0.,0.,0.,0.,0.,0.,,0.,0.,0.,0.,0.,0., O.}] > 0.05, {KSampleT}, {KruskalWallis}]}]}], MachinePrecision]], {0, 1}],
N[Table[Statistics " LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[<«<LocationEquivalenceTest>],
Statistics ~LocationEquivalenceTestingDump " i], {Statistics *LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump “iTestNameParser[Statistics ~LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics *LocationEquivalenceTestingDump i,
If[DistributionFitTest({o0., 0., 0., 0., 0., 0., 0., 0., O., 0., 0., O, O., 0., 0., 0., 0., 0, 0.0, 0., 0.0.0.0.,0.,0.,0.,0.,0.}]] > 0.025&&

=5 = =9

PearsonChiSquareTest[{0., 0.,
0.,0.,0.,0.,0.,0.,0,0,0,0,0,o,o,o,o,0.,0.,0.,0,0,0,0.,0.,0,0,0,0 0.,0., {0, 0., 0., 0., 0., 0.,
0.,0,0.,0.,0.,0.,0.,0,0.,0.,0., 0,0, 0.,0., 0., 0., 0., 0, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.,0.,0.,0.,0.0.,0.,0.,0.,0., 0., 0., 0., 0., 0., 0., 0., 0.}] > 0.05, {KSampleT}, {KruskalWallis}]}]}], MachinePrecision]]}],

2], Alignment - {Left, Automatic}, Dividers - {{2 » GrayLevel[0.7]}, {2 - GrayLevel[0.7]}},

Spacings -
Automatic] o

DistributionFitTest [
{0.,
0.,
0.,
0.,
0.,
0.,
0. .

0., ParseTime_:

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.}] =0.025 &&
PearsonChiSquareTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O.,

0., 0.,0.,0.,

0., 0.,0.,0.,

0.,0.,0.,0.,0.,

0., 0.,0.,0., 0.,

0., 0.,0.,0., 0.,

0.,0.,0.,0.,0.,

0., 0.,0.,0., 0.,

0., 0.,0.,0., 0.,

0., 0., 0.,0.,0., 0.,

0., 0.,0.,0., 0.},

{0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0.,0.,0.,0., 0.,

0., 0., 0.,0.,0., 0., 0.,

0., 0., 0.,0.,0.,0.,0.,0.,

0., 0., 0.,0.,0., 0., 0., 0.,

0., 0., 0.,0.,0.,0.,0.,0.,

0., 0., 0.,0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,0.}] >o.05}

0.60 =

Elp: (30 values) Between sample 4 and 5. Testl1l=0.708988 TestZ:{ Statistic _P-Value

KruskalWallis}
Kruskal-Wallis | 0.141826 0.709884

ParseTime_1a.

0.100

0.075

0.050

0.025

Cpu: (30 values) Between sample 5 and 6. Testl=
MannWhitneyTest({{0O, 0O,0,O0O,O0O,0O,0O,O0,O0},
{o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O}}]

Test2= {Gridljoinl:{, Statistic, P-Value}}, Transpose[{Statistics “LocationEquivalenceTestingDump ~iFormatTestNames|

If[DistributionFitTest({o0., 0., 0., 0., 0., 0., 0., 0., O., 0., 0., 0., 0., 0., O, O, O, 0, 0., 0., 0., 0., 0, 0.0, 0.0.0.,0.,0.}] = 0.025 &&
PearsonChiSquareTest({o., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0,,0,,0.,,0.,,0.,,0.,,0.,,0.,0.,0.,0.,0
o,o.,o0,o0,0,0,0,0.,0.,0,0,0.,o0,0,o0,o0.,o0,o0,o0,o0,o0,0,o0,o0.,o0.,0,0,0.,0.,0.,0.,0.,0.},
{0., 0., 0.,0.,0.,0,o0,o0,o0,o0,o0.,o0,o0.,0o0.,o0,o0,o0,o0,o0,o0.,o0,o0.,o0,o0,o0,o0,o0,o0,o0,o0.,0.,0.,0.,O0., 0,
o.,o0.,0.,0,0,0,0,o0,o0.,0.,0.,o0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}]]>0.05, {(KSampleT}, {KruskalWallis}]]}],
Transposel{Table[lf[Length[Statistics “LocationEquivalenceTestingDump "i] == 0, Statistics LocationEquivalenceTestingDump "i,

Statistics “LocationEquivalenceTestingDump "i[1]], {Statistics *LocationEquivalenceTestingDump i,
Table[HypothesisTestData[<«LocationEquivalenceTest>], Statistics ~LocationEquivalenceTestingDump "i]}],

If[lm[TabIe[Statistics “LocationEquivalenceTestingDump "iGetPValueForSpecificTest[HypothesisTestData[<«<LocationEquivalenceTest>],

Statistics ~LocationEquivalenceTestingDump i], {Statistics ~ LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump “iTestNameParser[Statistics " LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics LocationEquivalenceTestingDump " i,
If[DistributionFitTest({0., 0., 0., 0., 0., 0., 0., 0., O., O, O., 0., 0., 0., 0., 0., 0., 0.,,0.,0.,0.,0.,0.,0.,0.
0.025 &&PearsonChiSquareTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,0.,0.,0.,0., 0., .
o,o,o0.,0,0,0,0.,0.,0,0,o0.,o0.,o0,o0,o0,0o0.,o0,o0,o0,o0.,o0,o0,o0,0.,0.,0.,0.,0.,0. 0., 0.,0.,0.
o,o,o0,0,0,0,0,0,0.,0.,0.,0.,0.,0,0.,0.,0.,0,0.,0.,0,0,0.,0.,0.,0.,0.,0,0.,0.,0.,,0.,0

o.,o0.,o0.,0.,0,0,o0.,0,0.,0,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}]]>0.05, {(KSampleT}, {KruskalWallis}]}]}]] < ,
10000
Clip[Re[N[Table[Statistics *LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«<LocationEquivalenceTest>],
Statistics ~LocationEquivalenceTestingDump "i], {Statistics ~LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser[Statistics LocationEquivalenceTestingDump "i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump i, If[DistributionFitTest[
{0., 0, 0.,0,0.,0.,o0,0o0,o0,o0,o0.,o0.,0,0,o0,o0.,o0,0,o0.,o0,0.,0,0.,0.,0.,0.,0.,0.,0.,0.}] >0.025&&

PearsonChiSquareTest({o., 0., 0., 0., 0., 0., 0., 0., 0., O, O., 0., O, O., O, O, 0O, 0.,0.,o0.,0o0.,o0,o0,0.,0.,0.,0.,0.,0.,0.,
o,o0,o0.,o0,0,0,o0,0.,o0.,0.,o0.,o0,o0.,o0,o0,o0.,o0,o0,o0.,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,0.,{0.,0.,0.,0.,0.,0.,
o,o,o0,o0,0o0,0,0,0.,0,0,0,0,o0.,o0,0o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0,0,0.,0,0.,0.,0.,0.,0.,
o.,o0.,0,0,0,0,0.,0.,0.,0.,0.,,0.,,0.,0.,0., 0., 0.}]] >0.05, {KSampleT}, {KruskalWallis}]}]}], MachinePrecision]], {0, 1}],

N[Table[Statistics ~LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«<LocationEquivalenceTest>>],
Statistics *LocationEquivalenceTestingDump "i], {Statistics ~LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser[Statistics *LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump "i,
If[DistributionFitTest({o., 0., 0., 0., 0., 0., 0., O, O., 0., O., 0., 0., 0., 0., 0., 0.,0.,0.,o0.,0.,0.,0.,0.,0.,0.0.,0.,0.,0.}] >0.025&&

PearsonChiSquareTest({o0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O, O., 0., 0., 0., 0., 0.0, 0.,0.,0.,0.,0,0.,0.,0.,0.,0.,0.,0.,
o,o.,o0,o0,o0,0,0.,0.,o0.,o0,o0,0,o0,0.,0.,0.,o0.,o0,o0,o0,0,0.,0.,0.,o0.,o0.,o0,o0.,0.}/{0.,o0.,0.,0.,0.,0.,
o.,o.,o0,0o0.,0.,0,0,0.,0.0,0.,0.,0.,0,o0.,o0.,o0.,o0.,0,o0.,o0.,o0,o0,o0,o0.,o0,o0,0,o0.,0.,0,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 0., 0., 0., 0., 0., 0., 0.]] > 0.05, {KSampleT}, {KruskalWallis}]}}1, Machineprecision]]}],

2], Alignment - {Left, Automatic}, Dividers — {{2 — GrayLevel[0.7]}, {2 — GrayLevel[0.7]}},

Spacings -
Automatic] ’

DistributionFitTest |
(0.,
0.,
0.,
0.,
0.,
0.,

0., ParseTime_:

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.,

0.}] =0.025 &&
PearsonChiSquareTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O.,

0., 0.,0.,0.,

0., 0.,0.,0.,

0.,0.,0.,0.,0.,

0., 0.,0.,0., 0.,

0., 0.,0.,0., 0.,

0.,0.,0.,0.,0.,

0., 0.,0.,0., 0.,

0., 0.,0.,0., 0.,

0., 0., 0.,0.,0., 0.,

0., 0.,0.,0., 0.},

{0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0.,0.,0.,0., 0.,

0., 0., 0.,0.,0., 0., 0.,

0., 0., 0.,0.,0.,0.,0.,0.,

0., 0., 0.,0.,0., 0., 0., 0.,

0., 0., 0.,0.,0.,0.,0.,0.,

0., 0., 0.,0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,0.}] >o.05}

0.60 =

Elp: (30 values) Between sample 5 and 6. Testl=0.0564935 TestZ:{ Statistic P-Value

, KruskalWallis}
Kruskal-Wallis 14.01628 0.0440634

ParseTime_1a.

0.5

04

0.3

02

0.1

Cpu: (30 values) Between sample 6 and 7. Testl=
MannWhitneyTest({{0O, 0O,0,O0O,O0O,0O,0O,O0,O0},
{o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O}}]

Test2= {Gridljoinl:{, Statistic, P-Value}}, Transpose[{Statistics “LocationEquivalenceTestingDump ~iFormatTestNames|

If[DistributionFitTest({o0., 0., 0., 0., 0., 0., 0., 0., O., 0., 0., 0., 0., 0., O, O, O, 0, 0., 0., 0., 0., 0, 0.0, 0.0.0.,0.,0.}] = 0.025 &&
PearsonChiSquareTest({o., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0,,0,,0.,,0.,,0.,,0.,,0.,,0.,0.,0.,0.,0
o,o.,o0,o0,0,0,0,0.,0.,0,0,0.,o0,0,o0,o0.,o0,o0,o0,o0,o0,0,o0,o0.,o0.,0,0,0.,0.,0.,0.,0.,0.},
{0., 0., 0.,0.,0.,0,o0,o0,o0,o0,o0.,o0,o0.,0o0.,o0,o0,o0,o0,o0,o0.,o0,o0.,o0,o0,o0,o0,o0,o0,o0,o0.,0.,0.,0.,O0., 0,
o.,o0.,0.,0,0,0,0,o0,o0.,0.,0.,o0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}]]>0.05, {(KSampleT}, {KruskalWallis}]]}],
Transposel{Table[lf[Length[Statistics “LocationEquivalenceTestingDump "i] == 0, Statistics LocationEquivalenceTestingDump "i,

Statistics “LocationEquivalenceTestingDump "i[1]], {Statistics *LocationEquivalenceTestingDump i,
Table[HypothesisTestData[<«LocationEquivalenceTest>], Statistics ~LocationEquivalenceTestingDump "i]}],

If[lm[TabIe[Statistics “LocationEquivalenceTestingDump "iGetPValueForSpecificTest[HypothesisTestData[<«<LocationEquivalenceTest>],

Statistics ~LocationEquivalenceTestingDump i], {Statistics ~ LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump “iTestNameParser[Statistics " LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics LocationEquivalenceTestingDump " i,
If[DistributionFitTest({0., 0., 0., 0., 0., 0., 0., 0., O., O, O., 0., 0., 0., 0., 0., 0., 0.,,0.,0.,0.,0.,0.,0.,0.
0.025 &&PearsonChiSquareTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,0.,0.,0.,0., 0., .
o,o,o0.,0,0,0,0.,0.,0,0,o0.,o0.,o0,o0,o0,0o0.,o0,o0,o0,o0.,o0,o0,o0,0.,0.,0.,0.,0.,0. 0., 0.,0.,0.
o,o,o0,0,0,0,0,0,0.,0.,0.,0.,0.,0,0.,0.,0.,0,0.,0.,0,0,0.,0.,0.,0.,0.,0,0.,0.,0.,,0.,0

o.,o0.,o0.,0.,0,0,o0.,0,0.,0,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}]]>0.05, {(KSampleT}, {KruskalWallis}]}]}]] < ,
10000
Clip[Re[N[Table[Statistics *LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«<LocationEquivalenceTest>],
Statistics ~LocationEquivalenceTestingDump "i], {Statistics ~LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser[Statistics LocationEquivalenceTestingDump "i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump i, If[DistributionFitTest[
{0., 0, 0.,0,0.,0.,o0,0o0,o0,o0,o0.,o0.,0,0,o0,o0.,o0,0,o0.,o0,0.,0,0.,0.,0.,0.,0.,0.,0.,0.}] >0.025&&

PearsonChiSquareTest({o., 0., 0., 0., 0., 0., 0., 0., 0., O, O., 0., O, O., O, O, 0O, 0.,0.,o0.,0o0.,o0,o0,0.,0.,0.,0.,0.,0.,0.,
o,o0,o0.,o0,0,0,o0,0.,o0.,0.,o0.,o0,o0.,o0,o0,o0.,o0,o0,o0.,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,0.,{0.,0.,0.,0.,0.,0.,
o,o,o0,o0,0o0,0,0,0.,0,0,0,0,o0.,o0,0o0,o0,o0,o0.,o0,o0,o0.,o0,o0,o0,o0,o0.,o0,o0,o0,0,0.,0,0.,0.,0.,0.,0.,
o.,o0.,0,0,0,0,0.,0.,0.,0.,0.,,0.,,0.,0.,0., 0., 0.}]] >0.05, {KSampleT}, {KruskalWallis}]}]}], MachinePrecision]], {0, 1}],

N[Table[Statistics ~LocationEquivalenceTestingDump " iGetPValueForSpecificTest[HypothesisTestData[«<LocationEquivalenceTest>>],
Statistics *LocationEquivalenceTestingDump "i], {Statistics ~LocationEquivalenceTestingDump i,
Table[Statistics “LocationEquivalenceTestingDump " iTestNameParser[Statistics *LocationEquivalenceTestingDump " i][
HypothesisTestData[<«LocationEquivalenceTest>]], {Statistics ~LocationEquivalenceTestingDump "i,
If[DistributionFitTest({o., 0., 0., 0., 0., 0., 0., O, O., 0., O., 0., 0., 0., 0., 0., 0.,0.,0.,o0.,0.,0.,0.,0.,0.,0.0.,0.,0.,0.}] >0.025&&

PearsonChiSquareTest({o0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O, O., 0., 0., 0., 0., 0.0, 0.,0.,0.,0.,0,0.,0.,0.,0.,0.,0.,0.,
o,o.,o0,o0,o0,0,0.,0.,o0.,o0,o0,0,o0,0.,0.,0.,o0.,o0,o0,o0,0,0.,0.,0.,o0.,o0.,o0,o0.,0.}/{0.,o0.,0.,0.,0.,0.,
o.,o.,o0,0o0.,0.,0,0,0.,0.0,0.,0.,0.,0,o0.,o0.,o0.,o0.,0,o0.,o0.,o0,o0,o0,o0.,o0,o0,0,o0.,0.,0,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0., 0., 0., 0., 0., 0., 0., 0.]] > 0.05, {KSampleT}, {KruskalWallis}]}}1, Machineprecision]]}],

2], Alignment - {Left, Automatic}, Dividers — {{2 — GrayLevel[0.7]}, {2 — GrayLevel[0.7]}},

Spacings -
Automatic] ’

DistributionFitTest |
(0.,
0.,
0.,
0.,
0.,
0.,

22

0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.}] = 0.025 &&

PearsonChiSquareTest[{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O.,

0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
{0., 0., 0., 0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,
0.,0.,0.,0.,

0.,0.,0.,0.,

0.,
0.,

0.,

0.,

0.,

0.,

0., 0.,

0.},
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0., 0., 0.,

0.,0.,0.,0.,

0.,0.,0.,0.,

0.,0.,0.,0.,

0.,0.,0.,0.,

0., 0.}] > o.05}

0.60 =

Elp: (30 values) Between sample 6 and 7. Testl=0.74508 TestZ:{

Statistic ~ P-Value
Kruskal-Wallis 10.116753 0.735745

ParseTime_:

, KruskalWallis}

ParseTime_1a.nb
0.60 -

0.40

0.20

Visually Comparing Sample Sets

| also wanted to get a nice visual picture of my sample sets...together. Sometimes | include all the sample sets and sometime
don’t. It’s just based on what | want to convey. Sometimes you get a more appropriate view if all the data is not included.

In[27]:=
! SmoothHistogram[{ssCpu[l], ssCpu[2], ssCpu[3], ssCpu[4], ssCpu[5], ssCpu[6], ssCpu[7]},

PlotLabel -» "Occurances vs Parse Time CPU(us)", AxesLabel -» {"CPU(us)", "Occurs"}]

Occurances vs Parse Time CPU(us)
Occurs

0.60

040 —

ut[27]=

0.20 -

| 1 | 1 1 | 1 1 | 1 CPU(us)
5000 10000 15000 20000

%[428]_7 ParseTime_.
SmoothHistogram[{ssElp[2], ssElp[3], ssElp[4], ssElp[5], ssElp[6], ssElp[7]},
PlotLabel » "Occurances vs Elapsed Soft Parse Time (us)\nExecutions 2 to 7",
AxesLabel » {"Time (us)", "Occurs"}]
Occurances vs Elapsed Soft Parse Time (us)
Executions 2 to 7
Occurs
0.60 -
0.40 -
Jut[28]=
020 -
L | | | AN Time (us)
50 100 150

ﬁarse Time_1a.nb

[29]=
SmoothHistogram|[{ssElp[3], ssElp[4], ssElp[5], ssElp[6], ssElp[7]},

PlotLabel » "Occurances vs Elapsed Soft Parse Time (us)\nExecutions 3 to 7",
AxesLabel » {"Time (us)", "Occurs"}]

Occurances vs Elapsed Soft Parse Time (us)
Executions 3 to 7

Occurs

0.60 —

0.40 ‘ || |

R\
Al ‘
Jut[29]= | |

