
CPU Core vs Thread Analysis
Author: Craig Shallahamer (craig@orapub.com), Version 1f, 10-May-2011

Background and Purpose

The purpose of this notepad is to:

1. Demonstrate that sometimes there is a difference in CPU utilization calculations from different sources;
Oracle and the operating system.

2. Is the difference significant?

3. Why is there a difference? (This is not detailed in the notepad.)

Currently, on must Oracle system is little discrepancy between the Oracle and OS based utilization. How-
ever, on a few occasions I have personal seen examples where there is clearly a difference. This motivated
me to write a simple script to gather and record both Oracle and OS based utilization data, ask for volun-
teers to run the script on their production systems, and send me the resulting data. I emailed about 50
people asking for participation and I received seven sample sets back. (While this may seem like a low
response, considering how busy DBAs are and Iʼm asking them to gather data from a real production
environment, Iʼm not only thankful for their response but also very pleased with the response.)

The core utilization formula is:

U = R/C

where: R are the requirements and C is the capacity.

Oracle as a data source. Starting in Oracle 10g, the v$osstat viewʼs busy_time provides operating system
cpu time consumption in centi-seconds...the requirements (R). The v$osstat view also contains information
about the number of cpu cores. While the statistic name is still inconsistent, taking the largest value from
any stat that contains, cpu, core, socket but does not contain the word thread appears to provide the num-
ber of cpu cores. The capacity (C) is simply then the number of cores multiplied by the sample interval. In a
formula structure, it looks like this:

U = busy time / (interval X cores)

Note: The busy time and the interval must use the same unit of time, which is typically seconds. That is, the
busy time is the delta; the ending busy_time - starting busy_time.

Operating system as a data source. Without getting into the operating systemʼs data source and timing
details, we can gather the operating system based utilization by simply using the widely available, vmstat
command. Anytime OS utilization is mentioned, assume the utilization was gathered and based on vmstat.
The utilization could be calculated based on cores or threads, more specifically the capacity is based on
threads and not cores creating a much large capacity figure when compared to core based capacity. Depend-
ing on the number and distribution of threads, if threads are used to determine CPU capacity the Oracle and
OS based utilization calculations can be significantly different. For more details, see my blog entry on this
subject.

The purpose of this notepad is to:

1. Demonstrate that sometimes there is a difference in CPU utilization calculations from different sources;
Oracle and the operating system.

2. Is the difference significant?

3. Why is there a difference? (This is not detailed in the notepad.)

Currently, on must Oracle system is little discrepancy between the Oracle and OS based utilization. How-
ever, on a few occasions I have personal seen examples where there is clearly a difference. This motivated
me to write a simple script to gather and record both Oracle and OS based utilization data, ask for volun-
teers to run the script on their production systems, and send me the resulting data. I emailed about 50
people asking for participation and I received seven sample sets back. (While this may seem like a low
response, considering how busy DBAs are and Iʼm asking them to gather data from a real production
environment, Iʼm not only thankful for their response but also very pleased with the response.)

The core utilization formula is:

U = R/C

where: R are the requirements and C is the capacity.

Oracle as a data source. Starting in Oracle 10g, the v$osstat viewʼs busy_time provides operating system
cpu time consumption in centi-seconds...the requirements (R). The v$osstat view also contains information
about the number of cpu cores. While the statistic name is still inconsistent, taking the largest value from
any stat that contains, cpu, core, socket but does not contain the word thread appears to provide the num-
ber of cpu cores. The capacity (C) is simply then the number of cores multiplied by the sample interval. In a
formula structure, it looks like this:

U = busy time / (interval X cores)

Note: The busy time and the interval must use the same unit of time, which is typically seconds. That is, the
busy time is the delta; the ending busy_time - starting busy_time.

Operating system as a data source. Without getting into the operating systemʼs data source and timing
details, we can gather the operating system based utilization by simply using the widely available, vmstat
command. Anytime OS utilization is mentioned, assume the utilization was gathered and based on vmstat.
The utilization could be calculated based on cores or threads, more specifically the capacity is based on
threads and not cores creating a much large capacity figure when compared to core based capacity. Depend-
ing on the number and distribution of threads, if threads are used to determine CPU capacity the Oracle and
OS based utilization calculations can be significantly different. For more details, see my blog entry on this
subject.

Data Loading

All the data sets are contained at the bottom of this notebook along with their associated variable name.
Make sure to set the appropriate data source in the section and then re-evaluate the entire notebook
twice. One re-evaluation will not work because the data resides at the bottom of the notebook.

In[424]:=
UtilOracle = LZ2UtilOracle;
UtilOs = LZ2UtilOs;

Basic Statistics

In this section I calculate the basic statistics, such as the mean and median. My objective is to ensure the
data has been collected and entered correctly and also to compare the two datasets to see if they appear to
be different.

Here I calculate the utilization error, which is actual the difference between the Oracle (v$osstat based) and
OS (vmstat based) values. The UtilDiff is the pure difference. The UtilError is formatted to easily create a
residual (i.e., error graph). (Although Mathematica does have some other cool ways to do this, I didnʼt use
it...out of time.)

2 Core vs Thread 1f.nb

In[426]:=
UtilError = 8<;
UtilDiff = 8<;
Table@

AppendTo@UtilDiff, UtilOracle@@iDD - UtilOs@@iDDD;
AppendTo@UtilError, 8UtilOracle@@iDD, UtilDiff@@iDD<D;
, 8i, 1, Length@UtilOracleD<

D;
UtilDiff
UtilError

Out[429]=
8-0.0065, 0.0045, -0.0016, -0.0048, -0.0055, -0.0057, 0.002, -0.0005, 0.0024, 0.0022,
0.0027, 0.0031, -0.0007, 0.0038, -0.005, 0.0082, -0.0031, 0.0048, 0.0029, -0.0004,
0.0013, -0.0021, 0.0003, -0.0076, -0.0019, 0.0054, 0.0064, 0.004, 0.0004, 0.0017,
0.0029, 0.0067, -0.0002, 0.0045, -0.0031, -0.0001, 0.0018, 0.0048, 0.0069, 0.0023,
-0.0023, 0.0053, 0.0047, 0.0043, 0.004, 0.007, 0.0013, 0.0005, -0.0001, -0.0065,
0.0043, 0.0045, 0.0073, 0.0036, 0.0039, 0.0051, 0.0037, 0.0006, -0.0014, 0.0053<

Out[430]=
880.0335, -0.0065<, 80.0445, 0.0045<, 80.1084, -0.0016<, 80.1252, -0.0048<,
80.0345, -0.0055<, 80.0343, -0.0057<, 80.162, 0.002<, 80.0695, -0.0005<,
80.0324, 0.0024<, 80.0322, 0.0022<, 80.0327, 0.0027<, 80.0331, 0.0031<,
80.0393, -0.0007<, 80.1238, 0.0038<, 80.155, -0.005<, 80.1482, 0.0082<,
80.1169, -0.0031<, 80.1248, 0.0048<, 80.1129, 0.0029<, 80.0896, -0.0004<,
80.0913, 0.0013<, 80.0879, -0.0021<, 80.0703, 0.0003<, 80.0624, -0.0076<,
80.0681, -0.0019<, 80.0354, 0.0054<, 80.0764, 0.0064<, 80.084, 0.004<,
80.0704, 0.0004<, 80.0717, 0.0017<, 80.0629, 0.0029<, 80.0567, 0.0067<,
80.0598, -0.0002<, 80.0545, 0.0045<, 80.0469, -0.0031<, 80.0499, -0.0001<,
80.1418, 0.0018<, 80.1348, 0.0048<, 80.0769, 0.0069<, 80.1423, 0.0023<,
80.0477, -0.0023<, 80.0453, 0.0053<, 80.0447, 0.0047<, 80.0443, 0.0043<,
80.044, 0.004<, 80.047, 0.007<, 80.0513, 0.0013<, 80.0505, 0.0005<,
80.0499, -0.0001<, 80.1135, -0.0065<, 80.0543, 0.0043<, 80.0545, 0.0045<,
80.0573, 0.0073<, 80.0536, 0.0036<, 80.0539, 0.0039<, 80.0551, 0.0051<,
80.0537, 0.0037<, 80.0506, 0.0006<, 80.0486, -0.0014<, 80.0453, 0.0053<<

Next I calculate basic statistics and display them so we can visually see if there are any significant numerical
differences. The correlation (actually Pearsonʼs correlation coefficient, r) for all the data between the two
data sources is also computed. The worst is 0 and the best correlation is 1.

Core vs Thread 1f.nb 3

In[431]:=
MaxUtilOracle = Max@UtilOracleD;
MeanUtilOracle = Mean@UtilOracleD;
MedianUtilOracle = Median@UtilOracleD;
StdUtilOracle = StandardDeviation@UtilOracleD;
CountUtilOracle = Length@UtilOracleD;
MaxUtilOs = Max@UtilOsD;
MeanUtilOs = Mean@UtilOsD;
MedianUtilOs = Median@UtilOsD;
StdUtilOs = StandardDeviation@UtilOsD;
CountUtilOs = Length@UtilOsD;
MaxUtilDiff = MaxUtilOracle - MaxUtilOs;
MeanUtilDiff = MeanUtilOracle - MeanUtilOs;
MedianUtilDiff = MedianUtilOracle - MedianUtilOs;
StdUtilDiff = StdUtilOracle - StdUtilOs;
Grid@
88"Data Source", "Util Max", "Util Avg", "Util Median", "Util Std Dev", "Samples"<,
8"Oracle", MaxUtilOracle, MeanUtilOracle,
MedianUtilOracle, StdUtilOracle, CountUtilOracle<,

8"OS", MaxUtilOs, MeanUtilOs, MedianUtilOracle, StdUtilOs, CountUtilOs<,
8"Diff HOra-OSL", MaxUtilDiff, MeanUtilDiff, MedianUtilDiff, StdUtilDiff<

<, Frame Ø AllD
CorrelUtil = Correlation@UtilOracle, UtilOsD

Out[445]=

Data Source Util Max Util Avg Util Median Util Std Dev Samples
Oracle 0.162 0.0710383 0.0548 0.0358426 60
OS 0.16 0.0695 0.0548 0.0362396 60

Diff HOra-OSL 0.002 0.00153833 0.0048 -0.000396938

Out[446]=
0.994309

Utilization Difference (i.e., error) Analysis

I have a hunch that in certain circumstances the two utilization calculations will result in different values. I
want to check if any of our samples exhibit this behavior. Itʼs not a simple as it may seem because some-
times a difference may seem significant but it in reality randomness can explain the difference. To tell if the
utilization data sets are indeed different, we need to perform some tests. Below is a series of tests and
observations to, hopefully, tell us if the two utilization calculations can result in different utilizations.

1. Hypothesis test to statistically tell if our sample sets are significant different.
2. Histogram is visually look to see if the difference in the utilizations is normally distributed.
3. Scatter plot so we can visually observe the utilization difference.
4. Residual (i.e., error or utilization difference) graph to see if the difference changes based on the utilization.

Hypothesis test to check if the utilization differences can be explained by randomness.

Each sample set consists of 60 sample of two utilizations. The Oracle utilization was calculated bast on
v$osstat and is core based, not thread based. The OS utilization was gathered from vmstat. I want to know if
they are really and truly different. To do this, I need to perform a statistical hyposthesis test.

While I suspect some of our sample setʼs OS calculate CPU utilization based on threads and not cores AND
I calculate Oracleʼs CPU utilization based on cores, is the end result different? Perhaps it makes no differ-
ence; 58% compared to say 61%. We can perform a hypothese test is check if statistically there is so much
of a difference it can not be expalined by randomness and so something must be involved...like the underly-
ing calculations.

Hypothesis test details:

We want to test if our two sample sets are statistically different. If they are different, then we know any
difference is not caused by randomness. The difference could be caused any number of things, but not
randomness. But itʼs a little more complicated then is usual... We canʼt expect all the Oracle utilization data
values to be normally distributed. Think about it; there could easily be two clusters of values, say around
20% and 50% busy. This would result in a non-nomal distirbution. The same is true for the vmstat utilization
data values. Because of this non-normality, we canʼt simply perform a t-test.

All is not lost. According to the central limit therom, the new sample set based on the differences between
the utilization for each collection (one value for Oracle based and another value from vmstat) will be nor-
mal...if any differences can be explained by randomness. One way to do this is to compare our new sample
set (created from the utilization differences) to the normal distribution. If they are significantly different, we
know the utilization difference are not caused by randomness. This is what Iʼm doing below via Mathematica.

4 Core vs Thread 1f.nb

Each sample set consists of 60 sample of two utilizations. The Oracle utilization was calculated bast on
v$osstat and is core based, not thread based. The OS utilization was gathered from vmstat. I want to know if
they are really and truly different. To do this, I need to perform a statistical hyposthesis test.

While I suspect some of our sample setʼs OS calculate CPU utilization based on threads and not cores AND
I calculate Oracleʼs CPU utilization based on cores, is the end result different? Perhaps it makes no differ-
ence; 58% compared to say 61%. We can perform a hypothese test is check if statistically there is so much
of a difference it can not be expalined by randomness and so something must be involved...like the underly-
ing calculations.

Hypothesis test details:

We want to test if our two sample sets are statistically different. If they are different, then we know any
difference is not caused by randomness. The difference could be caused any number of things, but not
randomness. But itʼs a little more complicated then is usual... We canʼt expect all the Oracle utilization data
values to be normally distributed. Think about it; there could easily be two clusters of values, say around
20% and 50% busy. This would result in a non-nomal distirbution. The same is true for the vmstat utilization
data values. Because of this non-normality, we canʼt simply perform a t-test.

All is not lost. According to the central limit therom, the new sample set based on the differences between
the utilization for each collection (one value for Oracle based and another value from vmstat) will be nor-
mal...if any differences can be explained by randomness. One way to do this is to compare our new sample
set (created from the utilization differences) to the normal distribution. If they are significantly different, we
know the utilization difference are not caused by randomness. This is what Iʼm doing below via Mathematica.

In[447]:=
generatedDataSet = RandomVariate@

NormalDistribution@Mean@UtilDiffD, StandardDeviation@UtilDiffDD, 10 000D;
a = 0.05;

h = DistributionFitTest@UtilDiff, generatedDataSet, "HypothesisTestData"D;
h@"TestDataTable", AllD
If@AndersonDarlingTest@UtilDiff, generatedDataSetD > a,
Print@"Null hypo accepted: Data is

statistically similar. Any error is likely due to randomness."D,
Print@"Null hypo rejected: Data is statistically different. The

results cannot be explained by randomness, so there
must be something else causing the differences."D

D

Out[450]=

Statistic P-Value
Anderson-Darling 0.90749 0.409244
Cramér-von Mises 0.141921 0.41516
Pearson c2 13.764 0.246327

Null hypo accepted: Data is statistically similar. Any error is likely due to randomness.

Histogram of error to visually look to see if the error is normally distributed.

A hypothesis is one of the ways to check if the difference in utilization values (statically called the error) is
normally distributed, but another method is to visually look at a error in a histogram format. Viewing the
Histogram, we can also learn about the skewness of the error and trends. If the utilization calculation error is
pretty much the same and hovering around the average, we would expect to see the typical bell curve.

Core vs Thread 1f.nb 5

In[452]:=
Histogram@UtilDiff, PlotLabel Ø "Occurances vs Util Pct Difference",
AxesLabel Ø 8"Util % Diff HOra-OSL", "Occurs"<D

Out[452]=

Scatter plot by time to observe if the error changed based on sample gathering time and also utilization.

This scatter plot shows each sample setsʼ utilization based on Oracle (red squares) and the OS (blue
circles). The vertically further apart the points are the greater the utilization difference. This is a good way to
check our data set for outliers but also to see if utilization difference (i.e.., error) trends and is highly variant.
We may also get a glimpse of an increased utilization gap as utilization increases.

In[453]:=
ListPlot@8UtilOs, UtilOracle<,
PlotLabel Ø "Utilization vs Sample Number\nRed:Oracle Blue:OS",
AxesLabel Ø 8"Sample", "Util"<, PlotMarkers Ø 8Automatic, Small<,
PlotRange Ø 880, Length@UtilOracleD + 1<, 80, Max@UtilOracle, UtilOsD + .01<<D

Out[453]=

ÊÊ

Ê

Ê

ÊÊ

Ê

Ê

ÊÊÊÊ
Ê

Ê

Ê

Ê

ÊÊ
Ê

ÊÊÊ

ÊÊÊ

Ê

Ê
Ê
ÊÊ

Ê
Ê
Ê
ÊÊÊ

Ê
Ê

Ê

Ê

Ê
ÊÊÊÊÊ

ÊÊÊ

Ê

ÊÊÊÊÊÊÊÊÊ
Ê

‡
‡

‡

‡

‡‡

‡

‡

‡‡‡‡
‡

‡

‡
‡

‡
‡

‡

‡‡‡

‡
‡
‡

‡

‡
‡

‡‡
‡
‡‡‡

‡‡

‡
‡

‡

‡

‡‡‡‡‡‡
‡‡‡

‡

‡‡‡‡‡‡‡‡‡‡

0 10 20 30 40 50 60
Sample0.00

0.05

0.10

0.15

Util

Utilization vs Sample Number
Red:Oracle Blue:OS

Residual plot to clearly see if there is a trend to the error based on utilization.

Residual analysis is a powerful tool. The horizontal axis is the Oracle calculated utilization. The vertical axis
is the utilization difference (i.e., error or residual) between Oracle (v$osstat based) and the OS (vmstat
based). A residual graph makes is very visually easy to see if there are error patterns or trends. An example
trend could be, that as the Oracle utilization increases, the difference between the Oracle utilization and OS
utilization decreases. If there was no difference between the utilization calculations, the error trend line
would be flat, that is, having a slope of zero.

For easy visual comparisons, I only plotted differences up to plus/minus 5% (0.050). This is truly a compro-
mise because some data sets display better with a wider range (e.g., AG1), most display best with only a
1% plus/minus range.

The trend line equation is also displayed. The slope has the variable x after it. A slope of zero means the
trend line is flat. A slope of 0.25 means that every increase percent in the Oracle utilization, the difference
between the utilization calculations increases by 1/4 of a percent (0.0025), which is extremely small. So
while the slope may look shockingly massive, from an impact perspective it may be extremely flat.

6 Core vs Thread 1f.nb

Residual analysis is a powerful tool. The horizontal axis is the Oracle calculated utilization. The vertical axis
is the utilization difference (i.e., error or residual) between Oracle (v$osstat based) and the OS (vmstat
based). A residual graph makes is very visually easy to see if there are error patterns or trends. An example
trend could be, that as the Oracle utilization increases, the difference between the Oracle utilization and OS
utilization decreases. If there was no difference between the utilization calculations, the error trend line
would be flat, that is, having a slope of zero.

For easy visual comparisons, I only plotted differences up to plus/minus 5% (0.050). This is truly a compro-
mise because some data sets display better with a wider range (e.g., AG1), most display best with only a
1% plus/minus range.

The trend line equation is also displayed. The slope has the variable x after it. A slope of zero means the
trend line is flat. A slope of 0.25 means that every increase percent in the Oracle utilization, the difference
between the utilization calculations increases by 1/4 of a percent (0.0025), which is extremely small. So
while the slope may look shockingly massive, from an impact perspective it may be extremely flat.

In[454]:=
yRange = .050;
model = LinearModelFit@UtilError, x, xD
Show@ListPlot@8UtilError<, PlotLabel Ø "Residual Plot\nUtil Diff vs Utilization",

AxesLabel Ø 8"Oracle Util", "Util Diff\nHOra-OSL"<,
AxesOrigin Ø 80, 0<, PlotRange Ø 8-yRange, yRange<D

, Plot@model@"BestFit"D, 8x, 0, Max@UtilOracleD<D, PlotRange Ø 8-yRange, yRange<D

Out[455]=
FittedModelB 0.00191628-0.00532038 x F

Out[456]=

0.05 0.10 0.15
Oracle Util

-0.04

-0.02

0.02

0.04

Util Diff
HOra-OSL

Residual Plot
Util Diff vs Utilization

Experimental Data

Instead of reading data from the actual data collection output files (finalOut.txt), I decided to place all the
various samples into the notebook. This allows me to comment on each sample set below and also when
making notebook changes...there is only one!

Because I placed the experimental data at the bottom of the notepad, you will must evaluate the notebook
twice or evaluate the data set first and then evaluate the section of interest.

To keep the data contributors anonymity secret (after all these are production machines), I gave each
contributed a code, such as AG. I know their real names, emails, and other pertinent details.

Data Set: AG1

This data set was captured by AG and emailed to Craig on 4-May-2011. Itʼs an AIX 6.1.6.3 box with 16
cores each with 2 threads, so AIX considers there to be 32 CPUs.

Core vs Thread 1f.nb 7

In[457]:=
AG1UtilOracle = 8.3560, .3426, .3505, .4609, .4517, .3941, .3299, .2209,

.1437, .1142, .1083, .1086, .1150, .1277, .1690, .1325, .1655, .1886,

.2572, .2966, .3353, .3814, .4786, .5666, .6249, .6585, .6642, .6550,

.6660, .6472, .6475, .6345, .6534, .6506, .6420, .6483, .6268, .5806, .5721,

.5254, .4541, .4157, .3887, .3321, .3029, .2970, .1734, .1964, .2040, .2111,

.2222, .3765, .3562, .3479, .3299, .2077, .1670, .1187, .1372, .1034<
AG1UtilOs = 8.3200, .2700, .3200, .3900, .3900, .3300, .2900, .1900, .0900,

.0900, .1000, .0900, .0900, .1300, .1600, .1200, .1500, .1600, .2300,

.2600, .3000, .3300, .4200, .4500, .5100, .5100, .5100, .4800, .5100,

.5000, .4900, .4800, .5000, .5000, .4900, .5000, .4800, .4500, .4300,

.4100, .3500, .3400, .3200, .2800, .2500, .2200, .1000, .1700, .2000,

.1800, .2400, .3300, .3200, .3100, .3000, .1800, .1100, .1000, .1200, .0900<

Out[457]=
80.356, 0.3426, 0.3505, 0.4609, 0.4517, 0.3941, 0.3299, 0.2209, 0.1437, 0.1142,
0.1083, 0.1086, 0.115, 0.1277, 0.169, 0.1325, 0.1655, 0.1886, 0.2572, 0.2966,
0.3353, 0.3814, 0.4786, 0.5666, 0.6249, 0.6585, 0.6642, 0.655, 0.666, 0.6472,
0.6475, 0.6345, 0.6534, 0.6506, 0.642, 0.6483, 0.6268, 0.5806, 0.5721, 0.5254,
0.4541, 0.4157, 0.3887, 0.3321, 0.3029, 0.297, 0.1734, 0.1964, 0.204, 0.2111,
0.2222, 0.3765, 0.3562, 0.3479, 0.3299, 0.2077, 0.167, 0.1187, 0.1372, 0.1034<

Out[458]=
80.32, 0.27, 0.32, 0.39, 0.39, 0.33, 0.29, 0.19, 0.09, 0.09, 0.1, 0.09, 0.09, 0.13, 0.16,
0.12, 0.15, 0.16, 0.23, 0.26, 0.3, 0.33, 0.42, 0.45, 0.51, 0.51, 0.51, 0.48, 0.51, 0.5,
0.49, 0.48, 0.5, 0.5, 0.49, 0.5, 0.48, 0.45, 0.43, 0.41, 0.35, 0.34, 0.32, 0.28, 0.25,
0.22, 0.1, 0.17, 0.2, 0.18, 0.24, 0.33, 0.32, 0.31, 0.3, 0.18, 0.11, 0.1, 0.12, 0.09<

Data Set: AG2

This data set was captured by AG and emailed to Craig on 4-May-2011. Itʼs an unbranded server running
Linux 2.6.9-67.ELsmp 32 bit with 4 cores, each with 4 threads, for a total of 16 threads.

In[459]:=
AG2UtilOracle = 8.1018, .0992, .1097, .0935, .1003, .0933, .1026, .0986,

.0905, .0972, .0964, .1252, .1023, .0909, .1112, .1065, .0921, .1084,

.1272, .1063, .1447, .2068, .3341, .3490, .3410, .1242, .1274, .1051,

.1132, .1023, .1240, .1049, .1218, .1056, .1081, .1202, .1085, .1045, .1109,

.0981, .1081, .1065, .1171, .1130, .0983, .0970, .0909, .0836, .0958, .0940,

.1050, .0926, .1050, .0967, .1100, .0881, .0896, .0970, .0875, .1014<
AG2UtilOs = 8.1000, .1000, .1100, .0900, .1000, .0900, .1000, .1000, .0900,

.1000, .1000, .1300, .1000, .0900, .1100, .1100, .0900, .1100, .1300,

.1100, .1500, .2100, .3400, .3500, .3500, .1200, .1300, .1000, .1200,

.1000, .1300, .1000, .1300, .1000, .1100, .1200, .1100, .1000, .1200,

.1000, .1000, .1000, .1200, .1200, .1000, .1000, .0900, .0900, .0900,

.0900, .1000, .0900, .1000, .1000, .1200, .0900, .0900, .1000, .0900, .1000<

Out[459]=
80.1018, 0.0992, 0.1097, 0.0935, 0.1003, 0.0933, 0.1026, 0.0986, 0.0905, 0.0972,
0.0964, 0.1252, 0.1023, 0.0909, 0.1112, 0.1065, 0.0921, 0.1084, 0.1272, 0.1063,
0.1447, 0.2068, 0.3341, 0.349, 0.341, 0.1242, 0.1274, 0.1051, 0.1132, 0.1023,
0.124, 0.1049, 0.1218, 0.1056, 0.1081, 0.1202, 0.1085, 0.1045, 0.1109, 0.0981,
0.1081, 0.1065, 0.1171, 0.113, 0.0983, 0.097, 0.0909, 0.0836, 0.0958, 0.094,
0.105, 0.0926, 0.105, 0.0967, 0.11, 0.0881, 0.0896, 0.097, 0.0875, 0.1014<

Out[460]=
80.1, 0.1, 0.11, 0.09, 0.1, 0.09, 0.1, 0.1, 0.09, 0.1, 0.1, 0.13, 0.1, 0.09, 0.11, 0.11,
0.09, 0.11, 0.13, 0.11, 0.15, 0.21, 0.34, 0.35, 0.35, 0.12, 0.13, 0.1, 0.12, 0.1,
0.13, 0.1, 0.13, 0.1, 0.11, 0.12, 0.11, 0.1, 0.12, 0.1, 0.1, 0.1, 0.12, 0.12, 0.1,
0.1, 0.09, 0.09, 0.09, 0.09, 0.1, 0.09, 0.1, 0.1, 0.12, 0.09, 0.09, 0.1, 0.09, 0.1<

Data Set: GO1

This data set was captured by GO and emailed to Craig on 3-May-2011. Itʼs an unbranded server running
HPUX 10.2.0.4.0 64 bit with 3 cores, each with 2 threads, for a total of 6 threads.

8 Core vs Thread 1f.nb

In[461]:=
GO1UtilOracle = 8.0565, .0481, .0535, .1467, .0502, .0479, .0500, .1508,

.0457, .0417, .0928, .1217, .0398, .0527, .0678, .0893, .0593, .0508,

.0573, .0517, .0489, .0585, .0720, .0841, .0790, .1171, .1195, .1925,

.0826, .0553, .0780, .0888, .0845, .0958, .1319, .1457, .1039, .0917, .1001,

.1124, .1128, .1035, .1217, .0933, .1621, .1975, .1866, .1994, .1551, .0878,

.0929, .1278, .1155, .0947, .1211, .1164, .1035, .1223, .1105, .1174<
GO1UtilOs = 8.0600, .0500, .0500, .1400, .0500, .0500, .0500, .1600, .0600,

.0500, .1000, .1200, .0400, .0500, .0700, .0900, .0600, .0500, .0600,

.0500, .0500, .0600, .0700, .0900, .0800, .1200, .1200, .1900, .0900,

.0500, .0800, .0900, .0900, .1000, .1300, .1500, .1100, .1000, .1000,

.1100, .1100, .1000, .1200, .1000, .1600, .2000, .1900, .2100, .1500,

.0900, .0900, .1300, .1200, .1000, .1200, .1100, .1100, .1200, .1100, .1200<

Out[461]=
80.0565, 0.0481, 0.0535, 0.1467, 0.0502, 0.0479, 0.05, 0.1508, 0.0457, 0.0417,
0.0928, 0.1217, 0.0398, 0.0527, 0.0678, 0.0893, 0.0593, 0.0508, 0.0573, 0.0517,
0.0489, 0.0585, 0.072, 0.0841, 0.079, 0.1171, 0.1195, 0.1925, 0.0826, 0.0553,
0.078, 0.0888, 0.0845, 0.0958, 0.1319, 0.1457, 0.1039, 0.0917, 0.1001, 0.1124,
0.1128, 0.1035, 0.1217, 0.0933, 0.1621, 0.1975, 0.1866, 0.1994, 0.1551, 0.0878,
0.0929, 0.1278, 0.1155, 0.0947, 0.1211, 0.1164, 0.1035, 0.1223, 0.1105, 0.1174<

Out[462]=
80.06, 0.05, 0.05, 0.14, 0.05, 0.05, 0.05, 0.16, 0.06, 0.05, 0.1, 0.12, 0.04, 0.05, 0.07,
0.09, 0.06, 0.05, 0.06, 0.05, 0.05, 0.06, 0.07, 0.09, 0.08, 0.12, 0.12, 0.19, 0.09, 0.05,
0.08, 0.09, 0.09, 0.1, 0.13, 0.15, 0.11, 0.1, 0.1, 0.11, 0.11, 0.1, 0.12, 0.1, 0.16,
0.2, 0.19, 0.21, 0.15, 0.09, 0.09, 0.13, 0.12, 0.1, 0.12, 0.11, 0.11, 0.12, 0.11, 0.12<

Data Set: LZ1

This data set was captured by LZ and emailed to Craig on 4-May-2011. Itʼs an HP server running HPUX
B.11.31 64 bit with 64 cores. It appears threads are not being used.

In[463]:=
LZ1UtilOracle = 8.2864, .1745, .1426, .1427, .1504, .1507, .1204, .1170,

.1246, .1496, .1371, .1356, .1498, .2273, .2826, .3665, .3806, .4375,

.4468, .4305, .4571, .4711, .4792, .4666, .4438, .2583, .5461, .5669,

.5527, .5835, .5629, .5758, .5903, .6159, .6034, .6555, .6097, .6348, .6184,

.5997, .5222, .3183, .3006, .4659, .2522, .2653, .2683, .2703, .3442, .5389,

.3281, .2853, .2949, .2806, .2817, .3281, .2946, .2837, .2843, .3642<
LZ1UtilOs = 8.2900, .1700, .1500, .1400, .1500, .1500, .1200, .1200, .1200,

.1500, .1400, .1300, .1500, .2200, .2800, .3700, .3800, .4400, .4500,

.4300, .4600, .4700, .4800, .4700, .4400, .2600, .5500, .5600, .5500,

.5900, .5700, .5700, .5900, .6200, .6000, .6500, .6100, .6300, .6200,

.6000, .5200, .3100, .3000, .4600, .2500, .2600, .2700, .2700, .3500,

.5400, .3300, .2900, .3000, .2800, .2800, .3300, .2900, .2900, .2800, .3600<

Out[463]=
80.2864, 0.1745, 0.1426, 0.1427, 0.1504, 0.1507, 0.1204, 0.117, 0.1246, 0.1496,
0.1371, 0.1356, 0.1498, 0.2273, 0.2826, 0.3665, 0.3806, 0.4375, 0.4468, 0.4305,
0.4571, 0.4711, 0.4792, 0.4666, 0.4438, 0.2583, 0.5461, 0.5669, 0.5527, 0.5835,
0.5629, 0.5758, 0.5903, 0.6159, 0.6034, 0.6555, 0.6097, 0.6348, 0.6184, 0.5997,
0.5222, 0.3183, 0.3006, 0.4659, 0.2522, 0.2653, 0.2683, 0.2703, 0.3442, 0.5389,
0.3281, 0.2853, 0.2949, 0.2806, 0.2817, 0.3281, 0.2946, 0.2837, 0.2843, 0.3642<

Out[464]=
80.29, 0.17, 0.15, 0.14, 0.15, 0.15, 0.12, 0.12, 0.12, 0.15, 0.14, 0.13, 0.15, 0.22, 0.28,
0.37, 0.38, 0.44, 0.45, 0.43, 0.46, 0.47, 0.48, 0.47, 0.44, 0.26, 0.55, 0.56, 0.55, 0.59,
0.57, 0.57, 0.59, 0.62, 0.6, 0.65, 0.61, 0.63, 0.62, 0.6, 0.52, 0.31, 0.3, 0.46, 0.25,
0.26, 0.27, 0.27, 0.35, 0.54, 0.33, 0.29, 0.3, 0.28, 0.28, 0.33, 0.29, 0.29, 0.28, 0.36<

Data Set: LZ2

This data set was captured by LZ and emailed to Craig on 4-May-2011. Itʼs an HP server running HPUX
B.11.31 64 bit with 64 cores. It appears threads are not being used.

Core vs Thread 1f.nb 9

In[465]:=
LZ2UtilOracle = 8.0335, .0445, .1084, .1252, .0345, .0343, .1620, .0695,

.0324, .0322, .0327, .0331, .0393, .1238, .1550, .1482, .1169, .1248,

.1129, .0896, .0913, .0879, .0703, .0624, .0681, .0354, .0764, .0840,

.0704, .0717, .0629, .0567, .0598, .0545, .0469, .0499, .1418, .1348, .0769,

.1423, .0477, .0453, .0447, .0443, .0440, .0470, .0513, .0505, .0499, .1135,

.0543, .0545, .0573, .0536, .0539, .0551, .0537, .0506, .0486, .0453<
LZ2UtilOs = 8.0400, .0400, .1100, .1300, .0400, .0400, .1600, .0700, .0300,

.0300, .0300, .0300, .0400, .1200, .1600, .1400, .1200, .1200, .1100,

.0900, .0900, .0900, .0700, .0700, .0700, .0300, .0700, .0800, .0700,

.0700, .0600, .0500, .0600, .0500, .0500, .0500, .1400, .1300, .0700,

.1400, .0500, .0400, .0400, .0400, .0400, .0400, .0500, .0500, .0500,

.1200, .0500, .0500, .0500, .0500, .0500, .0500, .0500, .0500, .0500, .0400<

Out[465]=
80.0335, 0.0445, 0.1084, 0.1252, 0.0345, 0.0343, 0.162, 0.0695, 0.0324, 0.0322,
0.0327, 0.0331, 0.0393, 0.1238, 0.155, 0.1482, 0.1169, 0.1248, 0.1129, 0.0896,
0.0913, 0.0879, 0.0703, 0.0624, 0.0681, 0.0354, 0.0764, 0.084, 0.0704, 0.0717,
0.0629, 0.0567, 0.0598, 0.0545, 0.0469, 0.0499, 0.1418, 0.1348, 0.0769, 0.1423,
0.0477, 0.0453, 0.0447, 0.0443, 0.044, 0.047, 0.0513, 0.0505, 0.0499, 0.1135,
0.0543, 0.0545, 0.0573, 0.0536, 0.0539, 0.0551, 0.0537, 0.0506, 0.0486, 0.0453<

Out[466]=
80.04, 0.04, 0.11, 0.13, 0.04, 0.04, 0.16, 0.07, 0.03, 0.03, 0.03, 0.03, 0.04, 0.12, 0.16,
0.14, 0.12, 0.12, 0.11, 0.09, 0.09, 0.09, 0.07, 0.07, 0.07, 0.03, 0.07, 0.08, 0.07, 0.07,
0.06, 0.05, 0.06, 0.05, 0.05, 0.05, 0.14, 0.13, 0.07, 0.14, 0.05, 0.04, 0.04, 0.04, 0.04,
0.04, 0.05, 0.05, 0.05, 0.12, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.04<

Data Set: NN1

This data set was captured by NN and emailed to Craig on 4-May-2011. Itʼs an Solaris (UltraSPARC T1
server) with 4 cores, each with 2 threads, for a total of 8 threads.

In[467]:=
NN1UtilOracle = 8.2622, .2954, .3093, .2882, .3229, .2782, .3112, .2771,

.3065, .2292, .2524, .2465, .2767, .2717, .2836, .2985, .3684, .2904,

.2978, .2664, .3516, .3902, .3468, .3362, .3557, .4173, .3968, .3162,

.3199, .3040, .3586, .3493, .3795, .3982, .3070, .2515, .2865, .2508, .3389,

.2329, .2065, .1925, .2679, .2611, .2374, .2293, .2240, .2208, .2487, .2864,

.2499, .2478, .2473, .1967, .3250, .4378, .1984, .1793, .1857, .2629<
NN1UtilOs = 8.2600, .2900, .3100, .2900, .3200, .2800, .3100, .2800, .3000,

.2300, .2500, .2500, .2700, .2700, .2800, .3000, .3700, .2900, .3000,

.2600, .3500, .3900, .3500, .3300, .3600, .4200, .4000, .3200, .3200,

.3000, .3600, .3400, .3800, .3900, .3000, .2500, .2900, .2500, .3400,

.2400, .2100, .1900, .2700, .2600, .2300, .2300, .2200, .2200, .2500,

.2800, .2500, .2500, .2500, .1900, .3200, .4300, .2000, .1800, .1800, .2600<

Out[467]=
80.2622, 0.2954, 0.3093, 0.2882, 0.3229, 0.2782, 0.3112, 0.2771, 0.3065, 0.2292,
0.2524, 0.2465, 0.2767, 0.2717, 0.2836, 0.2985, 0.3684, 0.2904, 0.2978, 0.2664,
0.3516, 0.3902, 0.3468, 0.3362, 0.3557, 0.4173, 0.3968, 0.3162, 0.3199, 0.304,
0.3586, 0.3493, 0.3795, 0.3982, 0.307, 0.2515, 0.2865, 0.2508, 0.3389, 0.2329,
0.2065, 0.1925, 0.2679, 0.2611, 0.2374, 0.2293, 0.224, 0.2208, 0.2487, 0.2864,
0.2499, 0.2478, 0.2473, 0.1967, 0.325, 0.4378, 0.1984, 0.1793, 0.1857, 0.2629<

Out[468]=
80.26, 0.29, 0.31, 0.29, 0.32, 0.28, 0.31, 0.28, 0.3, 0.23, 0.25, 0.25, 0.27, 0.27, 0.28,
0.3, 0.37, 0.29, 0.3, 0.26, 0.35, 0.39, 0.35, 0.33, 0.36, 0.42, 0.4, 0.32, 0.32, 0.3,
0.36, 0.34, 0.38, 0.39, 0.3, 0.25, 0.29, 0.25, 0.34, 0.24, 0.21, 0.19, 0.27, 0.26, 0.23,
0.23, 0.22, 0.22, 0.25, 0.28, 0.25, 0.25, 0.25, 0.19, 0.32, 0.43, 0.2, 0.18, 0.18, 0.26<

Data Set: RB1

This data set was captured by RB and emailed to Craig on 29-April-2011. Itʼs an Red Hat Enterprise Linux
Server release 5.6 (Tikanga) 2.6.18 238.1.1.el5 (64-bit) with 8 cores (Quad-Core AMD Opteron(tm) Proces-
sor 2382) and weʼre not sure how many threads there are or threads are being used.

10 Core vs Thread 1f.nb

This data set was captured by RB and emailed to Craig on 29-April-2011. Itʼs an Red Hat Enterprise Linux
Server release 5.6 (Tikanga) 2.6.18 238.1.1.el5 (64-bit) with 8 cores (Quad-Core AMD Opteron(tm) Proces-
sor 2382) and weʼre not sure how many threads there are or threads are being used.

In[469]:=
RB1UtilOracle = 8.0642, .0747, .0943, .0495, .0705, .0728, .0724, .0622,

.0552, .0475, .0471, .0386, .0401, .0376, .0436, .0526, .0622, .0519,

.0673, .0558, .0610, .0496, .0700, .0633, .0626, .0615, .0584, .0323,

.0864, .1582, .1478, .1474, .1424, .1403, .0989, .0154, .0137, .0142, .0138,

.0141, .0142, .0133, .0180, .0163, .0822, .0599, .0170, .0156, .0448, .0141,

.0221, .0228, .0172, .0157, .0162, .0176, .0911, .0250, .0523, .1384<
RB1UtilOs = 8.0700, .0700, .0900, .0500, .0700, .0700, .0700, .0600, .0500,

.0500, .0500, .0400, .0400, .0400, .0400, .0500, .0600, .0500, .0600,

.0500, .0600, .0500, .0700, .0600, .0700, .0600, .0500, .0300, .0900,

.1600, .1500, .1500, .1500, .1400, .1000, .0200, .0200, .0200, .0200,

.0200, .0200, .0200, .0200, .0200, .0900, .0600, .0200, .0200, .0500,

.0200, .0300, .0300, .0200, .0200, .0200, .0200, .0900, .0300, .0500, .1400<

Out[469]=
80.0642, 0.0747, 0.0943, 0.0495, 0.0705, 0.0728, 0.0724, 0.0622, 0.0552, 0.0475,
0.0471, 0.0386, 0.0401, 0.0376, 0.0436, 0.0526, 0.0622, 0.0519, 0.0673, 0.0558,
0.061, 0.0496, 0.07, 0.0633, 0.0626, 0.0615, 0.0584, 0.0323, 0.0864, 0.1582,
0.1478, 0.1474, 0.1424, 0.1403, 0.0989, 0.0154, 0.0137, 0.0142, 0.0138, 0.0141,
0.0142, 0.0133, 0.018, 0.0163, 0.0822, 0.0599, 0.017, 0.0156, 0.0448, 0.0141,
0.0221, 0.0228, 0.0172, 0.0157, 0.0162, 0.0176, 0.0911, 0.025, 0.0523, 0.1384<

Out[470]=
80.07, 0.07, 0.09, 0.05, 0.07, 0.07, 0.07, 0.06, 0.05, 0.05, 0.05, 0.04, 0.04, 0.04, 0.04,
0.05, 0.06, 0.05, 0.06, 0.05, 0.06, 0.05, 0.07, 0.06, 0.07, 0.06, 0.05, 0.03, 0.09, 0.16,
0.15, 0.15, 0.15, 0.14, 0.1, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.09,
0.06, 0.02, 0.02, 0.05, 0.02, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.09, 0.03, 0.05, 0.14<

Core vs Thread 1f.nb 11

