SQL Statement Elapsed Time
Distribution Analysis

Author: Craig Shallahamer, Version 3e on 31-Jan-2011

The Point and Purpose

In my performance work I often am presented with a Statspack or AWR report. After performing my 3-Circle Analysis the high
resource SQL statement(s) are easily identified. This presents me the total elapsed time and the number of executions that
occured during the report interval. This allow me to easily compute the average statement elapsed time. However, I find that in
communicating using only the average SQL elapsed time implies the situation seem worse than it really is. And sometimes
people are surprised that the SQL statement takes “that long.” I want to better understand, describe, and communicate SQL
statement elapsed time. So in essence, my desire to be able to responsibly provide more detail with only limited inputs.

Now if SQL statement elapsed time confirms to a specific statistical distribution, then with minimal inputs I will be able to say
much more, communicate better, and serve my clients and students better. But even if it does not, if a general pattern develops I
may be able to say something like, “The typical elapsed time will most likely be much less than the average.” Just saying that

with responsible confidence will be valuable to me.

So my quest simply is:

1. Does the sample data conform to an existing and well understood statistical distribution. (test both statistically an visually)

2. If so, what else can I say about the data.

3. Validate the “what else can I say about the data” by comparing several real and actual samples statistics (actual values) with
the mathematical predicted values.

4. Provide a few example using Statspack and AWR data.

This notebook will focus on number 1. This notebook is not related to a specific data set. As the Data Loading and Verification
section makes obvious, it is more an experimental template that can be used on any appropriately formatted dataset.

A note about hypothesis testing. Hypothesis tests give quantitative answers to common questions, such as how good the fit is
between my data and a particular distribution, whether these distributions have the same mean or median, and whether these
datasets have the same variability. The hypothesis testing done in this notebook is comparing a data set with a known statistical
distribution. It is not about comparing two sample sets. In my performance work, I many times want to know if a change made
something faster. In these types of situations, I am comparing two sample sets to see if they are significantly different. In con-
trast, what I’'m doing in this experiment and this associated notebook is taking a sample set of SQL elapsed times and seeing if
their elapsed time pattern fits one of the common statistical distributions. So when you see the hypothesis testing section below,
it may seem a little strange to many performance-minded DBAs.

The data source is from a tool kit developed by OraPub’s Craig Shallahamer. The tool kit gathers performance statistics (e.g.,
CPU consumption) regarding a specific SQL statement over a given period of time. The data collected is inserted into an Oracle
table therein queried and used in this analysis. The data collection tool kit can be found at OraPub’s web-site, http://www.orapub.-
com and then doing a search for “sql distribution”.

2| SOQLElapsedDist 3f.nb

Data Loading and Verification

Set the full path location of the raw data file. There is to be no headers in the data file, just data. You can download my data
gathering tool from my web-site. Just do an OraPub search for “sql elapsed”.

= filename = "/Users/cshallah/Desktop/Garret8qtkxy0g5dlp3_1.txt";

Import the experimental results. The “Table” option allows all the data to be imported easily and perfectly. I also asked for the

number of data rows to ensure all my samples have been imported.

In[2]:=
e allData = Import[filename, "Table"];
Length[allData]
out[3]= 506

Let’s check the first and last data row.. just to be sure.

In[4]:=
" firstRow = allData[[1l, All1l]]
lastRow = allData[[Length[allData], All]]
Out[4]=
(8qtkxy0g5d1p3,2282376281, 1, 1, 0., 3., 0.1, 0.1}
U r8qtkxy0g5dlp3, 2282376281, 506, 1, 8., 127., 10., 44.259)

All the grunt statistical work will be performed on the samples from a particular column, so we need to segment the data by

column. I labeled each column so it will be easier to work with.

In[6]:= .
' executions = allData[[All, 3]];

piorExe = allData[[All, 4]];
lioExe = allData[[All, 5]];
cpuMsExe = allData[[All, 6]];
wallMsExe = allData[[All, 7]];

I want to show the complete first complete data sample by its columns, just to ensure the data has been parsed correctly. Com-

pare the below with the first row listing above.

Print [executions[[1]], ", ", piorExe[[1l]1], ", ",
lioExe[[1]], ", ", cpuMsExe[[1]], ", ", wallMsExe[[1]]]

In[11]:=

1, 0., 3., 0.1, 0.1

If all looks good, then let’s pick which data element we want to analyze. Since the main purpose of this notebook is elapsed time
analysis, regardless of the sampleDataSet variable setting, all the graphical headings will reference elapsed time (which is the

same as “wall time”).

In[12]:=
sampleDataSet = wallMsExe;

SQLElapsedDist 3f.nb

|3

Statistical Analysis

In[13]:=

Core Numeric Statistics (from actual sample set)

sampleCount = Length[sampleDataSet];

sampleMean = Mean [sampleDataSet];

sampleMedian = Median[sampleDataSet];

sampleStdDev = StandardDeviation[sampleDataSet];

sampleMinValue = Min[sampleDataSet];

sampleMaxValue = Max [sampleDataSet];

quantilelOpct = Quantile[sampleDataSet, 0.10];

quantile25pct = Quantile[sampleDataSet, 0.25];

quantile50pct = Quantile[sampleDataSet, 0.50];

quantile75pct = Quantile[sampleDataSet, 0.75];

quantile90pct = Quantile[sampleDataSet, 0.90];

quantile95pct = Quantile[sampleDataSet, 0.95];

Print["Quantile Values: 10%=", N[quantilelOpct], " 25%=",
N[quantile25pct], " 50%=", N[quantile50pct], " 75%=", N[quantile75pct],
" 90%=", N[quantile90pct], " 95%=", N[quantile95pct]]

Print["Count=", sampleCount, " Mean=", N[sampleMean, {99, 3}], " Median=",
N[sampleMedian, {99, 3}], " StdDev=", N[sampleStdDev, {99, 3}],

" Minimum=", N[sampleMinValue],
transformedSampleSet = {};

Table|[
AppendTo[transformedSampleSet, Log[sampleDataSet[[1]]]],
{i, 1, Length[sampleDataSet]}

1i

sampleMeanlLog = Mean [transformedSampleSet];

sampleMedianLog = Median[transformedSampleSet];

sampleStdDevLog = StandardDeviation[transformedSampleSet];

Print["Log Transformed: Mean=", sampleMeanLog,

" Median=", sampleMedianLog, " StdDev=", sampleStdDevLog]

Print["e=", N[e]]

Maximum=", N[sampleMaxValue]]

Quantile Values: 10%=0.1 25%=0.19 50%=25.643 75%=65.615 90%=117.949 95%=183.295

Count=506 Mean=47.8747 Median=25.8148 StdDev=67.1709 Minimum=0.082 Maximum=475.927

Log Transformed: Mean=2.09084 Median=3.25092 StdDev=2.7534

e=2.71828

Hypothesis Testing: Introduction, Data Set, and Distribution Setup

For each selected distribution type (e.g., normal, uniform), I am comparing the actual sample data to two similarly created

distributions. This allows me to create two tests related to each distribution. The first test (e.g., expoDist) is based on what I can

personally determine from a Statspack/AWR report, which is only the average elapsed time. (I actually push this a little to far
because from Statspack/AWR I can’t determine the standard deviation...but I can from the experimental data.) The second test
(e.g., expoDistEst) allows Mathematica to determine the best input parameters for a given distribution from the actual data set.
This is actually very cool, because if Mathematica derives the parameters and its created distribution does not satisfactorily
conform to our experimental data, then surely our experimental data is not “like” the given distribution. If the hypothesis test

4| SQLElapsedDist 3f.nb

claims the data (first test) and the similarly created distributions (second test) are significantly different, that’s a very strong case
that the sample data is truly different than the compared statistical distribution.

Note: I don’t actually use the m and s variables, but they are required when using the EstimatedDistribution function. This is why
they are repeated. The Estimated Distribution function amazingly trolls through the dataset and determines the best parameters
(e.g., m, s) for the specified distribution. If the data set is truly, let’s say exponential, then the derived mean should match the
actual mean.

You’ll notice I allowed the log normal distribution variables to print. I have personally tested that the /m (log mean) and Is (log
standard deviation) variables can be easily derived by applying each sample to the log function and then simply calculating the
mean and standard deviation. Apparently Mathematica is doing something similar!

In[34]:=
expoDist = ExponentialDistribution[1l / sampleMean];

expoDataSet = RandomVariate[expoDist, sampleCount];

expoDistEst =
EstimatedDistribution[sampleDataSet, ExponentialDistribution[1l /m]]
expoDataSetEst = RandomVariate[expoDistEst, sampleCount];

normalDist = NormalDistribution[sampleMean, sampleStdDev];
normalDataSet = RandomVariate [normalDist, sampleCount];

normalDistEst = EstimatedDistribution[sampleDataSet, NormalDistribution[m, s]]
normalDataSetEst = RandomVariate[normalDistEst, sampleCount];

lognormalDist = LogNormalDistribution[sampleMeanlog, sampleStdDevLog];
lognormalDataSet = RandomVariate[lognormalDist, sampleCount];

lognormalDistEst =
EstimatedDistribution[sampleDataSet, LogNormalDistribution[1lm, 1s]]
lognormalDataSetEst = RandomVariate[lognormalDistEst, sampleCount];

poissonDist = PoissonDistribution[sampleMean];
poissonDataSet = RandomVariate[poissonDist, sampleCount];

poissonDistEst =
EstimatedDistribution[IntegerPart[sampleDataSet], PoissonDistribution[m]]
poissonDataSetEst = RandomVariate[poissonDistEst, sampleCount];

poissonConsulDistEst = EstimatedDistribution|
IntegerPart [sampleDataSet], PoissonConsulDistribution[x, y]];

outisel= ExponentialDistribution[0.0208879]

QU= NormalDistribution[47.8747, 67.1045]

Out[44]= . . .
LogNormalDistribution[2.09084, 2.75068]

SQLElapsedDist 3f.nb |5

Out[48]=
uel PoissonDistribution[47.4783]

Hypothesis Testing: The Actual Tests

Hypothesis tests give quantitative answers to common questions, such as how good the fit is between my data and a particular
distribution, whether these distributions have the same mean or median, and whether these datasets have the same variability. In
this notepad the hypothesis testing is comparing an experimental data set with an established statistical distribution (e.g., normal).
We are not testing two sample data sets checking to see if they are from the sample population or not.

The key here is to set the dataDist variable to the distribution you are testing against (i.e., comparing with) the experimental data.
I am using a 5% alpha, which is very common. If the data set and the data distribution statistically match, then the p-value will be
greater than 5%. If they do not statistically match, the p-value will be less then 5%. All of my tests based on real experimental
data showed the p-value much less then 5%. It wasn’t even close!

Note: A good way to test to see if the notepad is set up and working correctly to set the dataDist and the dataSet to the same
distribution and another test would be to set them differently. For example, if you set the dataDist to normalDist and set the
dataSet to normalDataSet the hypothesis test should show a very strong match with the resulting p-value being much greater than
5%. Check it out! In contrast, if I then change the dataSet to poissonDataSet and run the hypothesis test, the p-value should be
much less than 5%. This is an important test to do yourself so you believe the experimental results! Visually some of the distribu-
tions match very closely to the experimental data set, yet the hypothesis tests clearly fail (p-value < 5%).

6 | SOQLElapsedDist 3f.nb

In[51]:= . .
! dataDist = lognormalDistEst;

dataSet = sampleDataSet;

generatedDataSet = RandomVariate[dataDist, 1000000];
a=0.05;

h = DistributionFitTest[dataSet, dataDist, "HypothesisTestData"];

h["TestDataTable", All]

If [AndersonDarlingTest [dataSet, dataDist] > a,

Print["Null hypo accepted: Data is statistically similar"],
Print["Null hypo rejected: Data is statistically
different. The results cannot be explained by randomness,
so there must be something else causing the differences."]
1
predMedianl =
e”“Mean[Table[Log[generatedDataSet[[i]]], {i, 1, Length[generatedDataSet]}]];
predMedian2 = e “"Mean [Table[Log[dataSet[[i]]], {i, 1, Length[dataSet]}]];

predMean = e” (sampleMeanLog + (sampleStdDevLog”2) / 2);

Print["Log normal prediction: actual sample median=",
N[Median[dataSet]], " pred median (actual transformed)=",
predMedian2, " pred median (generated transformed)=", predMedianl]

Print["Log normal prediction: actual sample mean=",

N[Mean[dataSet]], " pred mean=", predMean]

Statistic P-Value
Out[56]= Anderson-Darling 36.4917 0.
Cramér-von Mises 5.87377 4.80727x107*
Pearson y° 885.7 1.5536x107'7!

Null hypo rejected: Data is statistically different. The results cannot be explained
by randomness, so there must be something else causing the differences.

Log normal prediction: actual sample median=25.8148
pred median (actual transformed)=8.09172 pred median (generated transformed)=8.10417

Log normal prediction: actual sample mean-=47.8747 pred mean=358.325

Visually Analysis

The visual analysis is very interesting. In part because some of the experimental data sets seem to match a distribution rather
nicely (check using the log normal distribution) yet they clearly fail the hypothesis test. The visual analysis is also a good double-
check to ensure you are using the correct data distribution...because you can see it!

I show both the theoretically pure data distribution histogram and then below it the histogram based on the actual experimental
data. The final and third histogram overlays them. The overlay sometimes provides a nice way to observe how visually close (or
not) the experimental data is with the pure distribution. But be aware, that what may look like a very nice match visually, is not a
good match statistically (p-value < alpha).

The combination of a massive relative data value range and massive clustering near the origin makes this data very difficult to
view all together. After some analysis, showing the 0 to 90 to even to 97 percentile usually presents us with a respectable
histogram. But we can’t forget that the remaining few percentage of data is extremely skewed to the right. Picturing where the

mean and median reside will help complete a more realistic picture of the data set. By setting the variables below, you can

SQLElapsedDist 3f.nb

probably create a very pleasing and informative histogram.

In[63]:=

In[68]:=

Out[68]=

In[69]:=

out[69]=

|7

percentOfData = 95;

histogramBins = 40;

histogramBinSize = Quantile[dataSet, percentOfData/ 100] / histogramBins;
histgramMaxPoint = Quantile[dataSet, percentOfData / 100];

theoryDataSet = RandomVariate[dataDist, sampleCount];

Histogram[theoryDataSet, {0, histgramMaxPoint, histogramBinSize},
PlotLabel -» "Theoretical Data Distribution"]

Theoretical Data Distribution

200

150

100 |-

50

Mmoo

50 100 150

Histogram[dataSet, {0, histgramMaxPoint, histogramBinSize},
PlotLabel -» "Experimental Data Distribution"]

Experimental Data Distribution

150 |-

50 -

50 100 150

8| SQLElapsedDist 3f.nb

In[70]:=
o Histogram|[{dataSet, theoryDataSet},

{0, histgramMaxPoint, histogramBinSize}, PlotLabel -
"Histogram Overlay\nTheoretical & Experimental Data Distribution"]

Histogram Overlay
Theoretical & Experimental Data Distribution

200
150
Out[70]=

100

50

50 100 150

If the sample data set is log normal distributed, the below histogram will be very normal-like. The below histogram was created
by taking each data sample value, appying it to the log function, and placing the result into a new data set
(transformedSampleSet), and then plotting the histogram.

In[71]:= .
! Histogram[transformedSampleSet, 40,
PlotLabel -» "Histogram of Sample Data, Log Transformed"]
Histogram of Sample Data, Log Transformed
80 -
60
out[71]= ¥
40 |-
20
[L
—2 0 2 4 6

