
SQL Statement Inter-Arrival Time
Distribution Analysis

Author: Craig Shallahamer, Version 2b on 1-Feb-2011

The Point and Purpose
The purpose of this notepad is to aid in understanding the distribution of SQL statement inter-arrival times. Most DBAs expect
SQL statement arrival times to be pretty much the same and when pressed they’re likely to say they are probably normally
distributed. But to my knowledge, no one has ever actually verified this experimentally...and that is my objective.

More specifically, I want to:

1. Gather SQL statement inter-arrival times
2. Perform a statistical fitness test to determine if the inter-arrival times conform to standard statistical distributions
3. Make some useful conclusions relating to Oracle performance analysis

In computing system capacity planning, transaction inter-arrival times are assumed to be exponentially distributed. Said another
way, given bunch of samples with the average inter-arrival time of 10ms, more of the samples will have an inter-arrival times
less then 10ms than greater than 10ms. With a normal distribution you’re likely to see just as many samples greater than and also
less than the mean.

The value of statistically matching the collected data to a known statistical distribution is, even with a limited sample set or
simply the average inter-arrival time, additional information can be gleaned. This will aid in describing SQL statement arrival
rates and in developing predictive models.

A note about hypothesis testing. Hypothesis tests give quantitative answers to common questions, such as how good the fit is
between my data and a particular distribution, whether these distributions have the same mean or median, and whether these
datasets have the same variability. The hypothesis testing done in this notebook is comparing a data set with a known statistical
distribution. It is not about comparing two sample sets. In my performance work, I many times want to know if a change made
something faster. In these types of situations, I am comparing two sample sets to see if they are significantly different. In con-
trast, what I’m doing in this experiment and this associated notebook is taking a sample set of SQL elapsed times and seeing if
their elapsed time pattern fits one of the common statistical distributions. So when you see the hypothesis testing section below,
it may seem a little strange to many performance-minded DBAs.

The data source is from a tool kit developed by OraPub’s Craig Shallahamer. The tool kit gathers arrivals for a specific SQL
statement over a given period of time. The data collected is inserted into an Oracle table therein queried and used in this analysis.
The data collection tool kit along with examples and sample data can be found here.

Data Loading and Verification
Set the full path location of the raw data file. There is to be no headers in the data file, just data.

In[68]:=
filename = "êUsersêcshallahêDesktopêcraig_summary_list_clean_oltp1.txt";

Import the experimental results. The “List” option allows all the data to be imported easily and perfectly. The data is in seconds
between arrivals, but we typically talk in milliseconds and the graphs and math is more visibly pleasing, so I multiply by 1000
using Mathematica’s Table command. I also asked for the number of data rows to ensure all my samples have been imported.
There is also an option to only work with a subset of the data. This is nice when there are litteraly thousands of samples or we
want to focus on a subset of the data.

In[69]:=
rawSet = Import@filename, "List"D;
sampleStartElement = 1;
sampleEndElement = 100 000;
sampleDataSet = Table@1000 rawSet@@iDD,

8i, sampleStartElement, Min@sampleEndElement, Length@rawSetDD<D;
Length@rawSetD
Length@sampleDataSetD

Out[73]=
321

Out[74]=
321

Let’s check the first and last data row of the entire data set...just to be sure.

In[75]:=
firstRow = sampleDataSet@@1DD
lastRow = sampleDataSet@@Length@sampleDataSetDDD

Out[75]=
83.492

Out[76]=
63.145

If all looks good, then let’s move forward and do some analysis.

2 SQLArrivalAnal 2b.nb

Statistical Analysis

Core Numeric Statistics (from actual sample set)

In[77]:=
sampleCount = Length@sampleDataSetD;
sampleMean = Mean@sampleDataSetD;
sampleMedian = Median@sampleDataSetD;
sampleStdDev = StandardDeviation@sampleDataSetD;
sampleMinValue = Min@sampleDataSetD;
sampleMaxValue = Max@sampleDataSetD;
quantile10pct = Quantile@sampleDataSet, 0.10D;
quantile25pct = Quantile@sampleDataSet, 0.25D;
quantile50pct = Quantile@sampleDataSet, 0.50D;
quantile75pct = Quantile@sampleDataSet, 0.75D;
quantile90pct = Quantile@sampleDataSet, 0.90D;
quantile95pct = Quantile@sampleDataSet, 0.95D;
Print@"Quantile Values: 10%=", N@quantile10pctD, " 25%=",
N@quantile25pctD, " 50%=", N@quantile50pctD, " 75%=", N@quantile75pctD,
" 90%=", N@quantile90pctD, " 95%=", N@quantile95pctDD

Print@"Count=", sampleCount, " Mean=", N@sampleMean, 899, 3<D, " Median=",
N@sampleMedian, 899, 3<D, " StdDev=", N@sampleStdDev, 899, 3<D,
" Minimum=", N@sampleMinValueD, " Maximum=", N@sampleMaxValueDD

Print@"Log Mean=", N@Log@sampleMeanDD, " Log StdDev=", N@Log@sampleStdDevDDD
transformedSampleSet = 8<;
Table@

AppendTo@transformedSampleSet, Log@sampleDataSet@@iDDDD,
8i, 1, Length@sampleDataSetD<

D;
sampleMeanLog = Mean@transformedSampleSetD;
sampleMedianLog = Median@transformedSampleSetD;
sampleStdDevLog = StandardDeviation@transformedSampleSetD;
Print@"Log Transformed: Mean=", sampleMeanLog,
" Median=", sampleMedianLog, " StdDev=", sampleStdDevLogD

Print@"e=", N@‰DD

Quantile Values: 10%=8.758 25%=26.06 50%=59.112 75%=84.485 90%=91.821 95%=120.778

Count=321 Mean=186.792 Median=59.112 StdDev=1384.8 Minimum=0.135 Maximum=19 182.7

Log Mean=5.23 Log StdDev=7.23331

Log Transformed: Mean=3.72194 Median=4.07943 StdDev=1.28799

e=2.71828

Hypothesis Testing: Introduction, Data Set, and Distribution Setup

For each selected distribution type (e.g., normal, uniform), I am comparing the actual sample data to two similarly created
distributions. This allows me to create two tests related to each distribution. The first test (e.g., expoDist) is based on what I can
personally determine from a Statspack/AWR report, which is only the average elapsed time. (I actually push this a little to far
because from Statspack/AWR I can’t determine the standard deviation...but I can from the experimental data.) The second test
(e.g., expoDistEst) allows Mathematica to determine the best input parameters for a given distribution from the actual data set.
This is actually very cool, because if Mathematica derives the parameters and its created distribution does not satisfactorily
conform to our experimental data, then surely our experimental data is not “like” the given distribution. If the hypothesis test
claims the data (first test) and the similarly created distributions (second test) are significantly different, that’s a very strong case
that the sample data is truly different than the compared statistical distribution.

Note: I don’t actually use the m and s variables, but they are required when using the EstimatedDistribution function. This is why
they are repeated. The Estimated Distribution function amazingly trolls through the dataset and determines the best parameters
(e.g., m, s) for the specified distribution. If the data set is truly, let’s say exponential, then the derived mean should match the
actual mean.

You’ll notice I allowed the log normal distribution variables to print. I have personally tested that the lm (log mean) and ls (log
standard deviation) variables can be easily derived by applying each sample to the log function and then simply calculating the
mean and standard deviation. Apparently Mathematica is doing something similar!

SQLArrivalAnal 2b.nb 3

For each selected distribution type (e.g., normal, uniform), I am comparing the actual sample data to two similarly created
distributions. This allows me to create two tests related to each distribution. The first test (e.g., expoDist) is based on what I can
personally determine from a Statspack/AWR report, which is only the average elapsed time. (I actually push this a little to far
because from Statspack/AWR I can’t determine the standard deviation...but I can from the experimental data.) The second test
(e.g., expoDistEst) allows Mathematica to determine the best input parameters for a given distribution from the actual data set.
This is actually very cool, because if Mathematica derives the parameters and its created distribution does not satisfactorily
conform to our experimental data, then surely our experimental data is not “like” the given distribution. If the hypothesis test
claims the data (first test) and the similarly created distributions (second test) are significantly different, that’s a very strong case
that the sample data is truly different than the compared statistical distribution.

Note: I don’t actually use the m and s variables, but they are required when using the EstimatedDistribution function. This is why
they are repeated. The Estimated Distribution function amazingly trolls through the dataset and determines the best parameters
(e.g., m, s) for the specified distribution. If the data set is truly, let’s say exponential, then the derived mean should match the
actual mean.

You’ll notice I allowed the log normal distribution variables to print. I have personally tested that the lm (log mean) and ls (log
standard deviation) variables can be easily derived by applying each sample to the log function and then simply calculating the
mean and standard deviation. Apparently Mathematica is doing something similar!

In[99]:=
expoDist = ExponentialDistribution@1 ê sampleMeanD;
expoDataSet = RandomVariate@expoDist, sampleCountD;

expoDistEst =
EstimatedDistribution@sampleDataSet, ExponentialDistribution@1 ê mDD

expoDataSetEst = RandomVariate@expoDistEst, sampleCountD;

normalDist = NormalDistribution@sampleMean, sampleStdDevD;
normalDataSet = RandomVariate@normalDist, sampleCountD;

normalDistEst = EstimatedDistribution@sampleDataSet, NormalDistribution@m, sDD
normalDataSetEst = RandomVariate@normalDistEst, sampleCountD;

lognormalDist = LogNormalDistribution@sampleMeanLog, sampleStdDevLogD;
lognormalDataSet = RandomVariate@lognormalDist, sampleCountD;

lognormalDistEst =
EstimatedDistribution@sampleDataSet, LogNormalDistribution@lm, lsDD

lognormalDataSetEst = RandomVariate@lognormalDistEst, sampleCountD;

poissonDist = PoissonDistribution@sampleMeanD;
poissonDataSet = RandomVariate@poissonDist, sampleCountD;

poissonDistEst =
EstimatedDistribution@IntegerPart@sampleDataSetD, PoissonDistribution@mDD

poissonDataSetEst = RandomVariate@poissonDistEst, sampleCountD;

poissonConsulDistEst = EstimatedDistribution@
IntegerPart@sampleDataSetD, PoissonConsulDistribution@x, yDD;

Out[101]=
ExponentialDistribution@0.00535359D

Out[105]=
NormalDistribution@186.792, 1382.64D

4 SQLArrivalAnal 2b.nb

Out[109]=
LogNormalDistribution@3.72194, 1.28598D

Out[113]=
PoissonDistribution@186.315D

Hypothesis Testing: The Actual Tests

Hypothesis tests give quantitative answers to common questions, such as how good the fit is between my data and a particular
distribution, whether these distributions have the same mean or median, and whether these datasets have the same variability. In
this notepad the hypothesis testing is comparing an experimental data set with an established statistical distribution (e.g., normal).
We are not testing two sample data sets checking to see if they are from the sample population or not.

The key here is to set the dataDist variable to the distribution you are testing against (i.e., comparing with) the experimental data.
I am using a 5% alpha, which is very common. If the data set and the data distribution statistically match, then the p-value will be
greater than 5%. If they do not statistically match, the p-value will be less then 5%. All of my tests based on real experimental
data showed the p-value much less then 5%. It wasn’t even close!

Note: A good way to test to see if the notepad is set up and working correctly to set the dataDist and the dataSet to the same
distribution and another test would be to set them differently. For example, if you set the dataDist to normalDist and set the
dataSet to normalDataSet the hypothesis test should show a very strong match with the resulting p-value being much greater than
5%. Check it out! In contrast, if I then change the dataSet to poissonDataSet and run the hypothesis test, the p-value should be
much less than 5%. This is an important test to do yourself so you believe the experimental results! Visually some of the distribu-
tions match very closely to the experimental data set, yet the hypothesis tests clearly fail (p-value < 5%).

In[116]:=
dataDist = lognormalDistEst;
dataSet = sampleDataSet;
a = 0.05;

h = DistributionFitTest@dataSet, dataDist, "HypothesisTestData"D;
h@"TestDataTable", AllD
If@AndersonDarlingTest@dataSet, dataDistD > a,
Print@"Null hypo accepted: Data is statistically similar"D,
Print@"Null hypo rejected: Data is statistically

different. The results cannot be explained by randomness,
so there must be something else causing the differences."D

D

predMedian = ‰^sampleMeanLog;
predMean = ‰^HsampleMeanLog + HsampleStdDevLog^2L ê 2L;
Print@"Log normal prediction: actual sample median=",
N@Median@dataSetDD, " pred median=", predMedianD

Print@"Log normal prediction: actual sample mean=",
N@Mean@dataSetDD, " pred mean=", predMeanD

Out[120]=

Statistic P-Value
Anderson-Darling 17.5966 1.87443µ10-6

Cramér-von Mises 3.13741 3.75916µ10-8

Pearson c2 369.514 4.19043µ10-66

SQLArrivalAnal 2b.nb 5

Null hypo rejected: Data is statistically different. The results cannot be explained
by randomness, so there must be something else causing the differences.

Log normal prediction: actual sample median=59.112 pred median=41.3446

Log normal prediction: actual sample mean=186.792 pred mean=94.7646

Visually Analysis

The visual analysis is very interesting. In part because some of the experimental data sets seem to match a distribution rather
nicely (check using the log normal distribution) yet they clearly fail the hypothesis test. The visual analysis is also a good double-
check to ensure you are using the correct data distribution...because you can see it!

I show both the theoretically pure data distribution histogram and then below it the histogram based on the actual experimental
data. The final and third histogram overlays them. The overlay sometimes provides a nice way to observe how visually close (or
not) the experimental data is with the pure distribution. But be aware, that what may look like a very nice match visually, is not a
good match statistically (p-value < alpha).

The combination of a massive relative data value range and massive clustering near the origin makes this data very difficult to
view all together. After some analysis, showing the 0 to 90 to even to 97 percentile usually presents us with a respectable
histogram. But we can’t forget that the remaining few percentage of data is extremely skewed to the right. Picturing where the
mean and median reside will help complete a more realistic picture of the data set. By setting the variables below, you can
probably create a very pleasing and informative histogram.

In[126]:=
percentOfData = 95;
histogramBins = 40;
histogramBinSize = Quantile@dataSet, percentOfData ê 100D ê histogramBins;
histgramMaxPoint = Quantile@dataSet, percentOfData ê 100D;
theoryDataSet = RandomVariate@dataDist, sampleCountD;

In[131]:=
Histogram@theoryDataSet, 80, histgramMaxPoint, histogramBinSize<,
PlotLabel Ø "Theoretical Data Distribution"D

Out[131]=

6 SQLArrivalAnal 2b.nb

In[132]:=
Histogram@dataSet, 80, histgramMaxPoint, histogramBinSize<,
PlotLabel Ø "Experimental Data Distribution"D

Out[132]=

In[133]:=
Histogram@8dataSet, theoryDataSet<,
80, histgramMaxPoint, histogramBinSize<, PlotLabel Ø
"Histogram Overlay\nTheoretical & Experimental Data Distribution"D

Out[133]=

If the sample data set is log normal distributed, the below histogram will be very normal-like. The below histogram was created
by taking each data sample value, appying it to the log function, and placing the result into a new data set
(transformedSampleSet), and then plotting the histogram.

SQLArrivalAnal 2b.nb 7

In[134]:=
Histogram@transformedSampleSet, 40,
PlotLabel Ø "Histogram of Sample Data, Log Transformed"D

Out[134]=

8 SQLArrivalAnal 2b.nb

